張 銳,喬 鈺,吉巧麗,李建橋
?
馴鹿足底非規則特征形貌數學模型構建及驗證
張 銳,喬 鈺,吉巧麗,李建橋
(吉林大學工程仿生教育部重點實驗室,長春 130022)
為攻克常規防滑輪胎在冰面上通過性低的難題,以馴鹿足為仿生原型,對馴鹿足底特征形貌進行分析。該文通過逆向工程技術,將馴鹿足單個足底劃分為內、外側邊緣曲線、脊線凹槽面和足跟凸冠面4個典型部位。運用1stOp軟件和MATLAB軟件對特征部位擬合并構建數學模型,利用X射線能譜儀對馴鹿足底特征部位進行元素分析。內、外側邊緣曲線方程的決定系數R分別為0.994、0.992;脊線凹槽面和足跟凸冠面曲面方程的R分別為0.96、0.98。通過模型驗證發現,模型擬合值與實際值的相對誤差均值在5%以下,實現了馴鹿足底特征形貌從生物模型到數學模型的轉化。能譜分析結果表明馴鹿足底除含有大量的碳、氧及氮元素外,硫、硅、鐵、鋁、鈣5種元素含量較高,并且不同部位的元素存在差別。該研究可為工程仿生技術應用于冰路面行駛車輛胎面設計提供新的研究方向和參考依據。
仿生;模型;計算機仿真;逆向工程;馴鹿足底特征
結冰是影響交通運輸安全的不利氣象條件中最惡劣的條件之一,解決結冰路面汽車防滑問題一直是人們的迫切需求[1]。研究表明,輪胎花紋是影響冬季防滑輪胎防滑性能的重要因素[2-3],花紋的設計、走向、深度可以直接影響輪胎的諸多性能[4-6]。因此,設計一種具有特殊輪胎花紋結構且在冰路面上擁有高效防滑性能的冬季輪胎具有廣闊的應用前景。國外研究人員創造各種試驗條件研究橡膠輪胎與冰面的摩擦機理[7-12]。在國內,彭旭東 等[13-19]研究了橡膠與冰面的摩擦機理,并建立相關數學模型。周利坤等[20-22]由章魚吸盤受啟發,設計出一種具有吸盤式花紋結構的輪胎,仿真結果表明該輪胎具有良好的吸附防滑性能。本文從自然界獲取靈感,以冰雪環境動物—馴鹿為生物模本,采用工程仿生學技術,研究馴鹿在冰面上的防滑機理,將有助于解決車輛在冰面上難以行駛的難題。
馴鹿()是一種典型冰雪動物,在冰路面上具有防滑能力。馴鹿擁有鈍的腳趾,其具有鋒利邊緣的新月形足部可以牢牢控制住硬雪以及堅冰[23]。足底特征形貌是馴鹿在冰路面上具有良好防滑能力的關鍵因素之一,因此研究其足底形貌并結合仿生學原理設計防滑輪胎[24],將可能改善輪胎在冰路面上的通過性能。研究表明,馴鹿是一種遷徙動物,其腳枕在冬天收縮增固,露出蹄的邊緣,便于馴鹿在冰地面行走,防止滑跤[25]。而在夏天,當苔原柔軟濕潤的時候,腳枕變成海綿狀從而提供額外的摩擦力。因此以馴鹿足為仿生原型,研究一種冰面防滑性能良好、低振動、不破壞路面的仿生胎面具有重要理論意義和潛在應用前景。
逆向工程技術的發展為定量描述動物蹄的結構提供了三維表面測量及數字化模型設計方法[26-28]。本文基于逆向工程技術,獲取馴鹿足底曲面三維點云數據,利 1stOpt軟件的快速公式擬合方法對邊緣曲線進行擬合,利用Matlab軟件的數據擬合法對脊線凹槽面和足跟凸冠面進行數學建模。
1.1 馴鹿足幾何模型獲取
選取內蒙古自治區根河市鄂溫克族區馴鹿,此處馴鹿屬于中國亞種,在中國只有該地區有少量飼養。由于鄂溫克族習俗,馴鹿不能輕易殺害,故選取的原型均為正常死亡的馴鹿,年齡在十八歲左右。本文選取馴鹿左后足為仿生原型,將馴鹿足底部的污泥等雜質去除,使得馴鹿足底的曲面特征充分顯露,如圖1a所示。用三維激光掃描儀對3只左后足進行掃描,由于本文只考慮馴鹿足底的幾何特征結構對防滑性能的影響,所以將底部的剛毛部分用膠帶纏繞避免對掃描結果產生影響。將經過三維激光掃描得出的3只左后足的三維點云模型導入Geomagic Studio中進行去噪處理;通過封裝,把點云模型轉化成由三角形組成的曲面模型。利用軟件中的網格醫生自動診斷功能自動識別馴鹿足模型需要修復的區域,逐個對各個區域進行填補漏洞、去除尖點等一系列修復工作,直至模型完整。最后對整個足模型進行平滑處理,得到光滑平順的馴鹿足幾何模型,其中一個模型如圖1b所示。為了研究馴鹿足兩側尖銳邊緣切入冰面后其足底部與冰面的接觸區域,制作2 cm厚的正方形泥板,將馴鹿足壓在泥板上,用來模擬馴鹿蹄邊緣切入冰后蹄部與冰面的接觸情況并分析馴鹿足底的防滑特征,如圖1c所示。

圖1 馴鹿足及幾何特征
從泥板輪廓上可以清晰地發現馴鹿足底部的內外側邊緣部分全部接觸,曲線呈明顯的月牙形狀,新月形有尖銳邊緣的蹄子可抓緊堅冰,并且邊緣處相較于中間凸出一部分,這種結構有助于馴鹿蹄更好的切入冰面內。由于選蹄為馴鹿后蹄,觀察視頻中馴鹿行走以及奔跑時的姿態可以發現馴鹿在運動時后肢向兩側張開,蹄內側最先與冰面接觸,相比于外側受力更大,因此內外側馴鹿蹄的邊緣部分在運動時施力方式是有區別的,所以分別選取內外側邊緣進行建模,獲得內外側曲線的點云模型。2個凹面的相交線(脊線)在泥板上顯露出來,脊線兩側的凹槽面可以幫助馴鹿更穩健得在冰面上行走[25]。由于脊線處是除邊緣曲線外與地面接觸的第二部分,且對于冰面的施力方式也大致相同,故只選擇了外側蹄部脊線處曲面進行曲面擬合,足跟凸冠面也是如此。最后利用Geomagic Studio中的曲線提取功能提取3個掃描模型的內外側曲線;利用切割功能獲取3個掃描模型的脊線凹槽面與足跟凸冠面,如圖2所示。在Geomagic Studio軟件中把分割完成的曲線、曲面轉化成點云,保存成asc格式文件并轉換成TXT格式文件,得到了不同特征部位的三維坐標數據。將3個足部模型同一特征部位的坐標數據進行整合,為數學建模提供數據依據,最終擬合的數學模型帶有3個足部的特征。

a. 脊線凹槽面 a. Ridge groove surfaceb. 足跟凸冠面 b. Spherical cap surface
1.2 邊緣曲線的點云處理
由于在Geomagic Studio中對內外側邊緣曲線的點云數據是高精度提取,所以需要把曲線的點云數據導入到CATIA的數字化設計(digitized shape editor)模塊中進行過濾處理。根據馴鹿蹄足底曲線的形貌特征,選取非均勻過濾,也叫自適應過濾(adaptive filtering)[26]。內側邊緣曲線過濾前數據點為937個,過濾后數據點為36個;外側邊緣曲線過濾前數據點為1024個,過濾后數據點為37個。過濾后點云數據大量減少,但是點云過濾并沒有改變曲線的主要形貌特征,過濾前后曲線點云圖如圖3所示。由于曲面點云數量適中,故沒有對曲面點云進行過濾處理。

a. 過濾前外曲線 a. Outside curve before filtratingb. 過濾前內曲線 b. Inside curve before filtrating c. 過濾后外曲線 c. Outside curve after filtratingd. 過濾后內曲線 d. Inside curve after filtrating
2.1 邊緣曲線數學模型
由于馴鹿足底內外側邊緣曲線是空間曲線,因此需要專業的曲線擬合軟件1stOpt[29]對其進行擬合。將內外側邊緣曲線的三維坐標數據導入到1stOpt中,并定義為自變量,為因變量(其中,,為內外側邊緣曲線點云的三維坐標數據,mm),采用麥夸特法(Levenberg- Marquardt)以及快速公式擬合搜索方式對內、外側邊緣曲線進行擬合。考慮到工程應用以及模型的精度要求,只選擇1stOpt軟件中公式集的上半部分即可,內、外側邊緣曲線擬合方程如式(1)和式(2)所示。
1=27.411-0.747-0.0712-0.817-0.2142(1)
2=28.243-0.974-0.0982-0.168-0.1372(2)
式中為邊緣曲線點云在軸方向的數據,為邊緣曲線點云在軸方向的數據。,的最高指數均為2次,符合一般的工程應用,方便加工。式(1)和式(2)的均方差(RMSE)分別為0.032、0.020;誤差平方和(SSE)為0.037、0.010,均遠遠小于1;決定系數(R)為0.994和0.992,均接近于1。這表明生物模型被成功轉化為數學模型,并且方程精度很高。式(1)和式(2)在系數上存在一定的差別,這可能與馴鹿足底的受力方式有關。擬合圖形能夠表示馴鹿足底內外側曲線的基本特征,如圖4所示。

注:X軸代表提取的點云數據在X軸方向的坐標值;Y軸代表提取的點云數據在Y軸方向上的坐標值;Z軸代表提取的點云數據在Z軸方向上的坐標值,下同。
2.2 曲面數學模型
由于MATLAB工具箱(toolboxes)中的曲面擬合(surface fitting)模塊不需要編程可直接對點云數據進行多項式擬合,因此脊線凹槽面和足跟凸冠面用MATLAB軟件進行擬合。
2.2.1 脊線凹槽面數學模型
將脊線凹槽面坐標數據導入到MATLAB中,以為自變量,為因變量(其中,,為曲面點云的三維坐標數據),以多項式形式來擬合曲面特征點云,擬合結果如表1所示。

表1 不同指數自變量的脊線凹槽面擬合結果
分析表1可以看出,隨著指數的不斷增大,SSE與RMSE不斷減小,2不斷增大,這說明隨著指數增大,方程的擬合精度越來越高。在指數為2次之后SSE與RMSE無明顯減小,2無明顯增加:在的指數由22增加到23時,SSE與RMSE分別減小18.14和0.07,2增加0.104;當的指數由23增加到33時,SSE減小0.6,RMSE減小0.01,2沒有變化。由于每增加1個次冪數,曲面的復雜程度也會大大增大,并且考慮到擬合圖形與原生物模型的相近性,選取,的指數為23時的方程,擬合方程如式(3)所示。
3=3.18-0.65+2.24-0.122+0.14+0.782-0.032+0.072+0.073(3)
式(3)的擬合參數SSE為7.36,RMSE為0.09,R為0.96。該擬合曲面繼承了原生物模型的幾何特征,說明該部位曲面被成功地從生物模型轉換為數學模型,如圖5所示。

圖5 脊線凹槽處擬合曲面
2.2.2 足跟凸冠面數學模型
用同樣的方法,對足跟凸冠面進行模型,所得結果如表2所示。

表2 不同指數自變量的足跟凸冠面擬合結果
分析表2,、的指數都為2時,SSE和RMSE減少很多,2增大到0.98,與,的指數均為3時基本相同,并且考慮到實際加工的復雜程度,因此選定,的指數都為2。擬合方程如式(4)所示。
4=16.64+5.00+0.86+0.362+0.18+0.432(4)
式(4)的擬合參數SSE為1.46,RMSE為0.05,R為0.98。圖6為擬合的數學模型,外觀如同一個凸冠狀,符合原生物模型的基本特征。

圖6 足跟凸冠擬合曲面
2.3 數學模型驗證
為了驗證建立的曲線曲面的數學模型,選取建模樣本之外的同種馴鹿2個左后足作為驗證樣本。用三維激光掃描儀獲取樣本的點云數據并導入Geomagic Studio中進行數據處理得到光滑的樣本三維模型。將特征部位的點云導入到CATIA中,經過過濾轉化后得到2個驗證樣本的內外側邊緣曲線、脊線凹槽面和足跟凸冠面部位點云的三維坐標數據。將所得2個樣本特征部位坐標數據的坐標值分別帶入到所建立的數學模型公式中得出擬合值0,與原數據進行對比分析得出殘差和相對誤差,如表3所示。

表3 不同馴鹿足特征部位的模型擬合值與實際值對比分析
注:模型1是指內側邊緣曲線;模型2是指外側邊緣曲線;模型3是指脊線凹槽面;模型4是指足跟凸冠面。
Note: Model 1 indicates inside curve-fitting model; Model 2 indicates outside curve-fitting model; Model 3 indicates fitting surface of ridge groove; Model 4 indicates fitting surface of spherical cap.
分析表3,通過擬合值0與原數據值對比分析發現,文中所建立4個數學模型的計算值與實際值的一致性良好,相對誤差基本控制在10%以內。其中模型1和模型2的擬合模型最優,最大的相對誤差也僅為2.73%和1.66%。兩種模型的相對誤差均值為1.5%和0.68%。而模型3和模型4由于擬合的是不規則曲面,則最大相對誤差在10.28%。但2個模型的相對誤差均值為4.83%和4.27%,總體誤差較小,在工程設計上允許的誤差以內(±5%)[30],驗證了該文所構建數學模型的有效性。
考慮到馴鹿足不同部位的元素成分對于馴鹿在冰雪路面上的運動也有一定影響,而能譜分析對于研究材料成分具有重要作用[31-33]。因此利用Oxford公司生產的X射線光電子能譜儀對3個建模樣本和2個驗證樣本的凸冠、脊線凹槽以及邊緣部位進行2次成分測量,測量值取平均后如表4所示。

表4 馴鹿足底元素質量分數
注:“—”代表不存在。
Note: “—”indicates inexistence.
分析表4,馴鹿足底的微量元素基本由Ca、Si、Al、S、Cl、K、Fe及Mg組成,足底的不同部位的元素含量有所差別。元素Si(1.72%~4.16%)、Ca(2.43%~5.02%)和Al(1.25%~1.44%)在這些微量元素中含量最高。其中,凹槽部位的Ca和Si分別為5.02%和4.16%,均高于其他部位。邊緣部位沒有Mg和S存在,而Ca元素含量相對于凸冠和凹槽部位較少。除微量元素外,足底還含有大量的C(42.9%~44.54%)、N(4.86%~8.23%)和O(39.31%~41.38%)這些主要元素。凸冠及凹槽部位是以Si、Mg為主的無機成分,使得其微觀組織結構更加緊密,有利于提高結構的硬度。邊緣處缺少了某些元素,可能此特性會有利于其更好地切入冰面。各部位元素對馴鹿足防滑所起到的作用我們在今后將會有更深入的研究。
本研究通過三維激光掃描儀掃描獲得了馴鹿足的三維幾何模型,并通過Geomagic Studio軟件對馴鹿足底進行分區處理,并分離出內、外側邊緣曲線、脊線凹槽面、足跟凸冠面4個特征部位。利用CATIA軟件對特征部位進行過濾處理并得到特征點云的三維坐標數據。
用1stOpt軟件對內、外側邊緣曲線進行自動曲線擬合,得到了2個三維曲線方程,決定系數分別為0.994、0.992。在MATLAB中對脊線凹槽面和足跟凸冠面2個曲面進行擬合,得到2個曲面圖形以及擬合方程,決定系數分別為0.96、0.98。通過其他馴鹿蹄點云數據對數學模型進行驗證,結果表明相對誤差均值在5%以內,驗證了模型的有效性,實現了足底特征形貌的生物模型到數學模型的轉化。
分析了馴鹿足底特征部位的成分含量,在多種微量元素中Ca(2.43%~5.02%)和Si(1.72%~4.16%)元素較高,并存在于所有的特征部位中,這有利于提高馴鹿足底的硬度和耐磨性。為后期把馴鹿足底防滑特性以及足底材料屬性應用到輪胎胎面上奠定了理論基礎。
[1] 劉永剛,周利坤. 仿章魚吸盤式輪胎冰面防滑機理研究[J]. 黑龍江科技信息,2013(22):136-136.
[2] 陳旭. 改善橡膠表面摩擦學特性的仿生結構設計及試驗研究[D]. 長春:吉林大學,2008. Chen Xu. Biomimetic Structure Design and Experiments for Improving the Tribological Characteristic of the Rubber Surface[D]. Changchun: Jilin University, 2008. (in Chinese with English abstract)
[3] 莽超. 普利司通BLIZZAK冰銳客XG01[J]. 汽車與運動,2015(1):144-147.
[4] 吳中元. 白色戀人:米其林X-ICE^X13冬季輪胎[J]. 車主之友,2012(9):248-253.
[5] 謝立. 大陸公司展示新型冬季輪胎[J]. 橡塑技術與裝備,2016,42(5):37.
[6] 衛東. 倍耐力冰雪輪胎SCORPION WINTER[J]. 汽車與運動,2016(3):154-155.
[7] Schallamach A. How does rubber slide?[J]. Wear, 1971, 17(4): 301-312.
[8] Anudeep K. Bhoopalam, Corina Sandu. Review of the state of the art in experimental studies and mathematical modeling of tire performance on ice[J]. Journal of Terramechanics. 2014, 53: 19-35.
[9] Anudeep K. Bhoopalam, Corina Sandu, Saied Taheri. Experimental investigation of pneumatic tire performance on ice: Part 1–Indoor study[J]. Journal of Terramechanics, 2015, 60: 43-54.
[10] Anudeep K. Bhoopalam, Corina Sandu, Saied Taheri. Experimental investigation of pneumatic tire performance on ice: Part 2–Outdoor study[J]. Journal of Terramechanics. 2015, 60: 55-62.
[11] Anudeep K. Bhoopalam, Corina Sandu, Saied Taheri. Tiretraction of commercial vehicles on icy roads[J]. SAE International Journal of Commercial Vehicles, 2014, 7(2): 357-365.
[12] Bhoopalam A K,Sandu C,Taheri S. A tire–icemodel (TIM) for traction estimation[J]. Journal of Terramechanics, 2016, 66: 1-12
[13] 彭旭東,郭孔輝. 橡膠和輪胎的摩擦[J]. 橡膠工業雜志,2003,50(9):562-568.
[14] 彭旭東,雷毅,郭孔輝,等. 冰雪路面上輪胎摩擦特性的控制方法研究[J].中國機械工程,2001,12(11):30-33. Peng Xudong, Lei Yi, Guo Konghui, et al. Study on the control methods for tire traction characteristics on icy/snowy highways[J], China Mechanical Engineering. 2001, 12(11): 30-33. (in Chinese with English abstract)
[15] 彭旭東,宗長富,謝友柏,等. 冰面上輪胎摩擦牽引力的實驗研究[J]. 摩擦學學報,2000,20(1):32-35. Peng Xudong, Zong Changfu, Xie Youbai, et al. Experimental study of indoor tire traction force on ice[J]. Tribology, 2000, 20(1): 32-35. (in Chinese with English abstract)
[16] 彭旭東,謝友柏. 接地面全熔化條件下冰面輪胎摩擦力的預測[J]. 汽車工程,1999,21(4):193-198. Peng Xudong, Xie Youbai. Prediction of tire friction on icing road with fully melting contact patch[J]. Automotive Engineering, 1999, 21(4): 193-198. (in Chinese with English abstract)
[17] 彭旭東,謝友柏,郭孔輝. 輪胎摩擦學的研究與發展[J]. 中國機械工程,1999,10(2):215-219. Peng Xudong, Xie Youbai, Guo Konghui. The investigation and development trends of tire tribology[J]. China Mechanical Engineering, 1999, 10(2): 215-219. (in Chinese with English abstract)
[18] 彭旭東,謝友柏,郭孔輝. 一套預測冰面上汽車牽引力的模型[J]. 摩擦學學報,1998,18(4):351-355. Peng Xudong, Xie Youbai, Guo Konghui. A model for prediction of automobile traction on ice[J]. Tribology, 1998, 18(4): 351—355. (in Chinese with English abstract)
[19] 彭旭東,謝友柏. 冰雪路面汽車輪胎的摩擦機理研究[J]. 汽車技術,1998(4): 10-13.
[20] 周利坤,王洪偉. 仿章魚吸盤式輪胎花紋設計與有限元分析[J]. 西安理工大學學報,2013,29(2):228-232. Zhou Likun, Wang Hongwei. Imitation octopus sucker—type tire tread pattern design and finite element analysis[J]. Journal of Xi’an University of Technology, 2013, 29(2): 228-232. (in Chinese with English abstract)
[21] 劉永剛,周利坤. 仿章魚吸盤式輪胎彈塑性黏著接觸性能研究[J]. 機械設計與制造,2013(12):238-241. Liu Yonggang, Zhou Likun. Research on the performance of elastic—plastic adhesive contact of octopus sucker type tire[J]. Machinery Design & Manufacture, 2013(12): 238-241. (in Chinese with English abstract)
[22] 周利坤,王洪偉. 基于ADAMAS的仿章魚吸盤式輪胎防滑性能仿真分析[J]. 橡膠工業,2014,61(7):426-429. Zhou Likun, Wang Hongwei. Simulation Analysis on Anti—skid Performance of Bionic Tire by ADAMS[J]. China Rubber Industry, 2014, 61(7): 426-429. (in Chinese with English abstract)
[23] 常悅,張玉,陳巴特爾,等. 馴鹿及其生物學特性研究[J]. 家畜生態學報,2013,34(2):84-87. Chang Yue, Zhang Yu, Chen Bateer, et al. Reindeer and its biology characteristics[J]. Acta Ecologiae Animalis Domastici, 2013, 34(2): 84-87. (in Chinese with English abstract)
[24] 李杰,莊繼德,魏東. 沙漠用仿駝蹄橡膠輪胎的設計與試驗研究[J]. 農業工程學報,1999,15(2):32-37. Li Jie, Zhuang Jide, Wei Dong. Design and test of the bionic camel foot rubber tire for desert vehicles[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1999, 15(2): 32-37. (in Chinese with English abstract)
[25] Banfieldal A W F. The plight of the barren ground Caribou[J]. Oryx, 1957, 4(1): 5-20.
[26] 張銳,楊明明,潘潤鐸,等.鴕鳥足底非規則曲面形貌數學模型構建[J].農業工程學報,2015,31(增刊1):71-78. Zhang Rui, Yang Mingming, Pan Runduo. et al. Mathematical model establishment of irregular plantar surface of ostrich didactyl foot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.1): 71-78. (in Chinese with English abstract)
[27] 李世武,佟金,張書軍,等.牛蹄三維幾何模型逆向工程研究[J].農業工程學報,2004,20(2):156-160.Li Shiwu, Tong Jin, Zhang Shujun, et al. Three—dimensional geometrical modeling of the exterior configuration of a cattle hoof by reverse engineering technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(2): 156-160. (in Chinese with English abstract)
[28] 張永智,左春檉,孫少明,等.水田驅動葉輪仿生葉片機理數值模擬分析[J].農業機械學報,2008,39(11): 176-179. Zhang Yongzhi, Zuo Chuncheng, Sun Shaoming, et al. Numerical simulation on bionic blade of paddy impeller[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(11): 176—179. (in Chinese with English abstract)
[29] 董洽. 基于1stOpt的二級圓柱齒輪減速器優化設計[J].機械傳動,2012,36(7):69-71. Dong Qia. Optimization design of two—stage cylindrical gear reducer based on 1stOpt[J]. Journal of Mechanical Transmission, 2012, 36(7): 69-71. (in Chinese with English abstract)
[30] Yin Hanfeng, Xiao Youye, Wen Guilin, et al. Crushing analysis and multi—objective optimization design for bionic thin—walled structure[J]. Materials and Design, 2015, 87: 825-834.
[31] 高吭,李玉柱,佟金,等.東方螻蛄口器結構與表皮納米力學性能研究[J].農業機械學報,2011,42(8):224-227. Gao Hang, Li Yuzhu, Tong Jin, et al. Microstructure and nanoindentation properties of mouthparts of oriental mole cricket[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(8): 224-227. (in Chinese with English abstract)
[32] 馬云海,佟金,周江,等. 穿山甲鱗片表面的幾何形態特征及其性能[J].電子顯微學報,2008,27(4):336-340. Ma Yunhai, Tong Jin, Zhou Jiang, et al. Geometric shape and performance of the scale of the pangolin[J]. Journal of Chinese Electron Microscopy Society, 2008, 27(4): 336-340. (in Chinese with English abstract)
[33] 許順,佟金,馬云海,等. 基于ANSYS的竹象蟲頭管仿生模型抗扭轉分析[J]. 農業工程學報,2016,32(12):11—16. Xu Shun, Tong Jin, Ma Yunhai, et al. Torque analysis on bionic model of bamboo weevil rostrum based on ANSYS[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(12): 11-16. (in Chinese with English abstract)
Mathematical model establishment and validation of irregular characteristic morphology for reindeer foot bottom
Zhang Rui, Qiao Yu, Ji Qiaoli, Li Jianqiao
(130022,)
In recent years, the traffic accidents occur frequently in winter and how to prevent frequent traffic accidents has become an urgent problem to be solved. Reindeer lives in frigid areas and possesses the superior walking ability on ice. Reindeer feet are the exclusive parts which contact with the ice directly. The sole characteristic morphology of foot bottom is the key factor to the excellent anti-skid performance of reindeer. The research of the reindeer feet bottom characteristics will help to apply the superior characteristics to snow tire tread and improve the trafficability property of tire on ice ground. Therefore, the mathematical models of the reindeer feet were studied. The feet were taken from 4 eighteen-year-old adult homebred reindeers, which were bought from the Ewenki nationality located in Genhe City, Inner Mongolia, China. In order to avoid impurity interference, the feet were cleared up before the experiments. The geometric point clouds of the reindeer feet were obtained by using a three-dimensional (3D) hand-held non-contact laser scanner. After that, the data were imported to Geomagic Studio software and we reconstructed the analytical model. With the cutting function of the software, the reconstructed model of reindeer foot was divided into 4 typical characteristic areas: The edge curves (inside edge and outside edge), the ridge groove surface and spherical cap surface. In addition, these point clouds were imported to CATIA (computer aided three-dimensional interactive application) to be filtered, which reduced the calculation amount of the fitting curves and surfaces. We filtered the dense point clouds through adopting the reasonable method and the retained characteristic points that reflected the edge and sole morphology of reindeer foot with the digitized shape editor module of CATIA. Through the above processes, the 3D coordinate data points of these characteristic areas were exported. The edge curves were fitted using curve fitting software 1stOpt (First Optimization), and then fitting the equation and the fitted parameters were acquired, respectively. We also used the surface fitting function of Matlab software to fit 2 surfaces: Ridge groove surface and spherical cap surface. Finally, 2 surface fitting models were achieved. The fitting results revealed that the2(coefficient of determination) values of 2 curves and 2 surfaces were 0.994, 0.992, 0.96, and 0.98, respectively, which were all close to 1. It showed that the characteristic areas of reindeer feet were successfully transformed from the biological model to the mathematical model. In order to verify the model’s scientificity, the specimen of other reindeer foot was used. We acquired the 3D coordinate data of the same characteristic areas of other reindeer foot by adopting the same treatment. The values ofandaxis for 4 areas were imported into relevant mathematical models and the relevant values that were dependent variables were acquired. By comparing the differences between fitting values and actual values, the residual error range, relative error range and mean relative error were analyzed. The relative error range of 2 curves models was 0.16%-2.73% and 0.12%-1.66% respectively, and the mean relative error was 1.5% and 0.68%, respectively. The relative error range of surfaces models was 0.43%-10.28% and 1.25%-9.74%, respectively. The maximum was about 10%, due to the influence of air impurities. However, the mean relative errors of surfaces models were 4.83% and 4.27%, respectively. The mean relative errors of 4 models were within 5%, which proved the mathematical models’ effectiveness in this paper. In addition, the elements of reindeer feet were examined with EDS (energy dispersive spectroscopy). It included such elements as S, Si, Fe, Al, K and Ca, besides C, O and N. Different chemical elements meant different compounds, and different surfaces with different skid-resistance were composed of different elements. This paper will provide research direction for studying tire on ice ground with engineering bionic technology.
bionic; models; computer simulation; reverse engineering; plantar surface of reindeer foot
10.11975/j.issn.1002-6819.2017.08.007
TB17
A
1002-6819(2017)-08-0056-06
2016-07-27
2017-01-23
國家自然科學基金資助項目(51275199);陸軍及通用武器裝備技術革新項目(2014220101001105)
張 銳,男,吉林磐石人,教授,博士生導師,主要從事松軟地面仿生行走及數值計算研究。長春 吉林大學工程仿生教育部重點實驗室,130022。Email:zhangrui@jlu.edu.cn
張 銳,喬 鈺,吉巧麗,李建橋. 馴鹿足底非規則特征形貌數學模型構建及驗證[J]. 農業工程學報,2017,33(8):56-61. doi:10.11975/j.issn.1002-6819.2017.08.007 http://www.tcsae.org
Zhang Rui, Qiao Yu, Ji Qiaoli, Li Jianqiao. Mathematical model establishment and validation of irregular characteristic morphology for reindeer foot bottom[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 56-61. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.08.007 http://www.tcsae.org