楊亞星,段曉波,段飛,李勝輝,王書香,張金超
(河北大學 化學與環境科學學院,河北 保定 071002)
?
2,2’-聯吡啶和三氟甲基修飾β-二酮金屬鈀(Ⅱ)配合物的合成、表征和體外細胞毒性
楊亞星,段曉波,段飛,李勝輝,王書香,張金超
(河北大學 化學與環境科學學院,河北 保定 071002)
以取代苯乙酮、三氟乙酸乙酯及2,2’-聯吡啶硝酸鈀為原料,經Claisen縮合反應和螯合反應得到了系列三氟甲基修飾的β-二酮金屬鈀(Ⅱ)配合物.配合物結構通過了NMR、ESI-MS、IR及元素分析的表征,用X線單晶衍射測定了配合物3g的晶體結構.用MTT法對產物的體外細胞毒性進行了評價.初步結果表明:所得配合物對MCF-7細胞的毒性明顯高于Hela和A549細胞,其中配合物3a對MCF-7的細胞毒性與順鉑相當.
Pd(Ⅱ)配合物;β-二酮;三氟甲基;聯吡啶;細胞毒性
惡性腫瘤嚴重威脅人類健康和生命,預防和治療惡性腫瘤已經成為人類迫切需要解決的重大問題.化療是目前治療惡性腫瘤最有效的手段之一.自1967年順鉑的抗癌活性被發現以后,鉑類抗癌藥物的研究與應用得到了迅速發展.如今,順鉑、卡鉑等鉑類藥物已成為癌癥化療中不可缺少的藥物[1].然而,其嚴重的毒副作用,如腎毒性、耳毒性以及神經毒性和本身耐藥性極大限制了該類藥物在臨床上的應用[2-5].
鈀和鉑相似或相同的結構特征及其配合物相近的化學性質,使得金屬鈀配合物成為一類新的潛在抗腫瘤藥物[6-9].β-二酮類化合物不僅是合成雜環化合物的重要中間體,而且是優良的金屬萃取劑.同時,以β-二酮作為O,O-螯合配體構建的金屬配合物也體現出不錯的抗腫瘤活性[10-17].近年來,吸電子基團三氟甲基功能化的β-二酮金屬配合物以其優良的脂溶性、高的細胞攝取及增強的毒性受到人們的廣泛關注[11-13,17].本文通過Claisen縮合反應制備了三氟甲基功能化的β-二酮化合物,并通過與2,2’-聯吡啶硝酸鈀進行配位組裝,得到了系列三氟甲基功能化的β-二酮金屬鈀配合物.在結構表征基礎上,進行了體外細胞毒性及構效關系的研究.
1.1 試劑與儀器
XT-4型顯微熔點測定儀(溫度計未校正);AVANCEⅢ 600 MHz NMR超導核磁共振儀(TMS為內標,DMSO-d6為溶劑,瑞士Bruker公司);Model-683型紅外光譜儀(KBr壓片,美國Perkin-Elmer公司);Apex Ultra 7.0T 型質譜儀(瑞士Bruker公司);Vario EL Ⅲ型元素分析儀(德國Elementar公司).DMEM培養基,胰蛋白酶以及胎牛血清購自Gibco公司;MTT,芐青霉素和鏈霉素購自Sigma公司.實驗所用的所有化學品及試劑均為分析純.
1.2 配合物3a-3g的合成
1.2.1 配合物合成方法
配合物(3a-3g)的合成路線如式1所示.聯吡啶硝酸鈀(bipy)Pd(ONO2)2的合成參考文獻[18]進行.三氟甲基修飾的β-二酮配體(2a-2g)是由取代苯乙酮(1a-1g)與三氟乙酸乙酯通過Claisen縮合反應制備[19].將等摩爾的β-二酮配體(2a-2g)與(bipy)Pd(ONO2)2(21.6 mg,0.1 mmol)加入到水-丙酮(體積比為1∶1)溶液中,室溫攪拌2 h,然后升溫至50 °C并加入10倍量的KPF6,立即有黃色固體生成,過濾,用少量冷水洗滌,真空干燥,得產物3(3a-3g).

3a:Ar=Ph;3b:Ar=4-CH3C6H4;3c:Ar=4-CH3OC6H4;3d:Ar=4-CH3CH2OC6H4;3e:Ar=3-CH3OC6H4;3f:Ar=3,4-(CH3O)2C6H3;3g:Ar=3,4,5-(CH3O)3C6H2式1 配合物(3a-3g)的合成路線Scheme 1 Synthetic routine of the complexes(3a-3g)
1.2.2 配合物3g的單晶X-ray結構檢測
單晶結構測定使用SMARTAPEXⅡ衍射儀(瑞士Bruker公司),石墨單色器,Mo-Kα射線(λ=0.071 073 nm),T=296(2)K,采用ω-θ掃描方式.主要原子坐標使用SHELXS-97程序由直接法完成,對全部非氫原子坐標及其各向異性熱參數進行了全矩陣最小二乘法修正(F2).所有非氫原子均為理論加氫,利用幾何參數對氫原子坐標進行結構優化.配合物3g晶體學參數見表1.

表1 3g的晶體學參數
1.3 體外細胞毒性評價
1.3.1 細胞培養及溶液配制
HeLa,A549和MCF-7 3種不同種類癌細胞系在含有10%的胎牛血清,100u/mL青霉素和100μg/mL鏈霉素的DMEM培養基中孵育(體積分數5%CO2,37 ℃).將化合物在二甲亞砜中溶解,并配制成5mmol/L母液待用;取一定量的上述母液并用不含血清的培養基逐級稀釋至不同濃度(1.0,10,100 和500μmol/L),并使DMSO的體積分數低于0.1%.
1.3.2 體外細胞毒性
取處于對數生長期的HeLa、A549、MCF-7細胞懸浮液(1.5×104個/mL)均勻加入到96孔板中(90μL/孔),于37 ℃, 體積分數5%CO2的培養箱中孵育.待細胞貼壁后,加入配合物3a-3g溶液(10 μL/孔,每種化合物設5個平行),使其終濃度為0.1、1、10和50 μmol/L,空白對照組每孔加10 μL不含血清的培養基.48 h后,每孔加入10 μL (5 mg/mL)的MTT儲備液,37 ℃孵育4 h后,棄去培養基,并加入100 μL/孔DMSO,室溫下震蕩10 min,將細胞產生的甲瓚充分溶解,使用酶標儀在570 nm波長下測定每孔OD值.根據公式:(1-ODtreated/ODcontrol)×100%計算細胞生長抑制率,再計算IC50值.MTT測定方法如T.Mosmann[20]所述.
2.1 化合物的合成與表征

3a:黃色固體,產率:93%;IR(KBr,cm-1):3 094,1 593,1 567,1 294,1 155,840,765,557;1H NMR(d6-DMSO,600 MHz)δ:8.65(d,J=7.8 Hz,3H),8.49(t,J=7.8 Hz,2H),8.34(br s,1H),8.24(dd,J1=8.4 Hz,J2=0.6 Hz,2H),7.97(br s,2H),7.80(t,J=7.8 Hz,1H),7.62(t,J=7.8 Hz,1H),6.99(s,1H);13C NMR(d6-DMSO,150 MHz)δ:184.06,165.07,154.49,153.68,147.55,145.53,141.60,126.98,124.27,123.35,123.15,116.94,116.85,114.98,112.98,110.29,109.60,93.92;HRMS(ESI):C20H14F3N2O2Pd[M]+計算值為477.004 5,實測值為 477.004 1.化合物C20H14N2F9O2PPd元素分析理論值為C,38.58;H,2.27;N,4.50.實測值為 C,38.19;H,2.46;N,4.80.
3b:黃色固體,產率:95%;IR(KBr,cm-1):3 094,2 993,1 587,1 554,1 292,1 155,840,767,557;1H NMR(d6-DMSO,600 MHz)δ:8.61(d,J=7.8 Hz,2H),8.54(br s,1H),8.46(t,J=7.8 Hz,2H),8.25(br s,1H),8.08(d,J=7.8 Hz,2H),7.94(br s,2H),7.34(d,J=8.4 Hz,2H),6.90(s,1H),2.41(s,3H);13C NMR(d6-DMSO,150 MHz)δ:186.94,167.60(q,2JCF=33.0 Hz),156.05(q,3JCF=4.5 Hz),147.47,147.11,146.53,143.16,130.86,130.35,129.43,128.72,128.61,124.90,117.33(q,1JCF=280.5 Hz),95.71,21.84;HRMS(ESI):C21H16F3N2O2Pd[M]+計算值為491.020 1,實測值為491.020 0.化合物C21H16N2F9O2PPd元素分析理論值為C,39.61;H,2.53;N,4.40.實測值為C,39.72;H,2.53;N,4.24.
3c:黃色固體,產率:93%;IR(KBr,cm-1):3 095,2 938,2 853,1 583,1 562,1 276,1 178,840,771,557;1H NMR(d6-DMSO,600 MHz)δ:8.57-8.63(m,2H),8.55(d,J=4.2 Hz,1H),8.46(d,J=7.8 Hz,2H),8.24(d,J=4.2 Hz,1H),8.20(d,J=9.0 Hz,2H),7.93(t,J=6.6 Hz,2H),7.03(d,J=9.0 Hz,2H),6.86(s,1H),3.90(s,3H);13C NMR(d6-DMSO,150 MHz)δ:185.59,166.68(q,2JCF=33.0 Hz),165.19,156.00,155.91,147.34,147.02,143.14,132.04,128.66,128.52,125.69,124.87,117.39(q,1JCF=282.0 Hz),115.03,95.21,56.26;HRMS(ESI):C21H16F3N2O3Pd[M]+計算值為507.015 1,實測值為507.014 9.化合物C21H16N2F9O3PPd元素分析理論值為C,38.64;H,2.47;N,4.29.實測值為C,38.74;H,2.48;N,4.11.
3d:黃色固體,產率:89%;IR(KBr,cm-1):3 095,1 567,1 311,1 263,1 153,842,765,557;1H NMR(d6-DMSO,600 MHz)δ:8.61(t,J=6.0 Hz,2H),8.56(d,J=4.8 Hz,1H),8.47(d,J=7.2 Hz,1H),8.44(d,J=7.2 Hz,1H),8.25(d,J=4.8 Hz,1H),8.19(d,J=9.0 Hz,2H),7.93(t,J=7.2 Hz,2H),7.01(d,J=9.0 Hz,2H),6.86(s,1H),4.17(q,J=7.2 Hz,2H),1.40(t,J=7.2 Hz,3H);13C NMR(d6-DMSO,150 MHz)δ:185.68,166.64(q,2JCF=33.0 Hz),164.55,156.12,156.01,147.48,147.10,143.11,132.12,128.66,128.52,125.66,124.85,117.46(q,1JCF=280.5Hz),115.38,95.25,64.46,14.86;HRMS(ESI):C22H18F3N2O3Pd[M]+計算值為521.030 7,實測值為521.030 6.化合物C22H18N2F9O3PPd元素分析理論值為C,39.63;H,2.72;N,4.20.實測值為C,39.69;H,2.69;N,3.85.
3e:黃色固體,產率:96%;IR(KBr,cm-1):3 111,2 985,2 938,1 585,1 560,1 295,1 253,1 189,842,771,557;1H NMR(d6-DMSO,600 MHz)δ:8.65(d,J=7.8 Hz,2H),8.57(br s,1H),8.48(t,J=7.8 Hz,2H),8.32(br s,1H),7.98(br s,2H),7.78(d,J=7.8 Hz,1H),7.61(s,1H),7.50(t,J=7.8 Hz,1H),7.34(dd,J1=8.4 Hz,J2=2.4 Hz,1H),6.97(s,1H),3.89(s,3H);13C NMR(d6-DMSO,150 MHz)δ:187.35,166.57(q,2JCF=33.0 Hz),166.35,164.97,155.78,155.69,147.12,146.80,142.92,131.82,128.44,128.30,125.47,124.65,124.62,118.11,116.24(q,1JCF=282.0 Hz),114.81,94.99,56.03;HRMS(ESI):C21H16F3N2O3Pd[M]+計算值為507.015 1,實測值為507.014 7.化合物C21H16N2F9O3PPd元素分析理論值為C,38.64;H,2.47;N,4.29.實測值為C,38.76;H,2.41;N,4.14.
3f:黃色固體,產率:95%;IR(KBr,cm-1):3 095,2 946,1 567,1 506,1 274,840,771,557;1H NMR(d6-DMSO,600 MHz)δ:8.65(br s,2H),8.59(br s,1H),8.49(d,J=7.2 Hz,2H),8.31(br s,1H),7.97(br s,2H),7.92(dd,J1=8.4 Hz,J2=1.8 Hz,1H),7.58(d,J=1.8 Hz,1H),7.07(d,J=8.4 Hz,1H),6.93(s,1H),3.91(s,3H),3.90(s,3H);13C NMR(d6-DMSO,150 MHz)δ:185.63,166.75(q,2JCF=33.0 Hz),156.05,155.25,149.12,147.10,143.17,143.12,128.54,125.84,124.92,124.71,121.42,121.32,118.51,117.48(q,1JCF=280.5 Hz),114.54,111.86,111.16,95.48,56.39,56.13;HRMS(ESI):C22H18F3N2O4Pd[M]+計算值為537.025 7,實測值為537.026 0.化合物C22H18N2F9O4PPd·0.5CH3CN元素分析理論值為C,39.28;H,2.79;N,4.98.實測值為C,39.13;H,2.67;N,4.95.
3g:黃色固體,產率:98%;IR(KBr,cm-1):3 095,2 946,1 565,1 498,1 328,1 286,1 218,1 126,844,771,557;1H NMR(d6-DMSO,600 MHz)δ:8.67(d,J=7.2 Hz,2H),8.59(br s,1H),8.50(br s,2H),8.35(br s,1H),7.99(d,J=6.0 Hz,2H),7.39(s,2H),7.01(s,1H),3.94(s,6H),3.81(s,3H);13C NMR(d6-DMSO,150 MHz)δ:186.34,167.75(q,2JCF=33.0 Hz),156.23,153.26,147.24,147.07,143.89,143.21,128.82,128.60,128.48,124.97,124.94,117.42(q,1JCF=280.5 Hz),106.75,96.23,60.76,56.73;HRMS(ESI):C23H20F3N2O5Pd[M]+計算值為567.036 3,實測值為567.036 1.化合物C23H20N2F9O5PPd·0.5H2O元素分析理論值為C,38.27;H,2.93;N,3.88.實測值為C,37.96;H,2.62;N,3.66.
2.2 配合物3g的晶體結構
X線晶體結構分析證實了配合物3g的分子結構.該晶體屬于三斜晶系,P-1空間群.如圖1所示,配合物3g是一個以鈀(Ⅱ)為中心的離散單核物質.聯吡啶和β-二酮配體都是以二齒形式與鈀(Ⅱ)配位.Pd—O鍵長在0.198 0(2)到 0.200 2(2)nm之間,Pd—N鍵長在0.199 3(2)到0.199 9(3)nm(表2).N(1)-Pd(1)-N(2)和O(1)-Pd(1)-O(2)2個平面的角度為2.378(105)°,這表明Pd(1)-O(1)-O(2)-N(1)-N(2)有輕微扭曲.同時,晶體結構中六氟磷酸根陰離子的出現為配合物存在形式提供了有力證據.

圖1 配合物3g的晶體結構Fig.1 ORTEP type view of the molecular structure of complex 3g with labeled non-H atoms
2.3 體外細胞毒性
以HeLa、A549和MCF-7為模型,采用MTT法測定化合物3a-3g以及對照物順鉑的IC50值,結果見表3.結果表明,制得的大部分配合物(3a,3b,3c,3d 和3e)對MCF-7和Hela細胞的毒性比對A549要好一些.對MCF-7細胞,配合物3a的細胞毒性(11.74 μmol/L)與順鉑(11.06 μmol/L)相當.
新的β-二酮Pd(Ⅱ)配合物構效關系如下:1)對MCF-7細胞,苯環上取代基(甲基、甲氧基和乙氧基)的引入在一定程度上降低了其細胞毒性.例如,配合物3b-3g的細胞毒性明顯低于3a.2)對Hela細胞,苯環上的取代基也同樣影響了配合物的細胞毒性.甲基的引入增強細胞毒性,而甲氧基的引入反而減小細胞毒性.例如,3b比3a細胞毒性更好,而3c-3g的細胞毒性比3a小.3)對A549細胞,配合物3g相對于3a表現出更好的細胞毒性.這可能因為3個甲基的引入增加了3g的脂溶性,從而導致細胞攝取增加.該結果可能對未來設計新的抗癌藥物具有一定的借鑒意義.

表2 配合物3g的鍵長(nm)和鍵角(°)

表3 配合物對MCF-7,Hela 和A549的細胞毒性
在三氟甲基修飾β-二酮類化合物制備的基礎上,經螯合反應合成了7種新穎的以2,2’-聯吡啶與三氟甲基修飾β-二酮為配體的單核Pd(Ⅱ)配合物,采用MTT法對其體外細胞毒性進行了評價.配合物3a-3g對MCF-7,Hela 和A549 3種細胞系有比較明顯的細胞毒性.其中,配合物3a對MCF-7的細胞毒性與順鉑相當.三氟甲基的引入賦予金屬鈀配合物優良的脂溶性、代謝穩定性和較高的細胞毒性.有關這些金屬鈀(Ⅱ)配合物的作用機制尚待進一步的研究.研究結果對將來新的金屬抗腫瘤試劑的設計、合成具有一定的借鑒意義.
[1] KELLAND L.The resurgence of platinum-based cancer chemotherapy[J].Nat Rev Cancer,2007,7(8):573-584.DOI:10.1038/nrc2167.
[2] HO Y P,AU-YEUNG S C,TO K K W.Platinum-based anticancer agents:Innovative design strategies and biological perspectives[J].Med Res Rev,2003,23(5):633-655.DOI:10.1002/med.10038.
[3] KOSTOVA I.Platinum complexes as anticancer agents[J].Recent Pat Anticancer Drug Discov,2006,1(1):1-22.DOI:10.2174/157489206775246458.
[4] JAKUPEC M A,GALANSKI M,KEPPLER B K.Tumour-inhibiting platinum complexes-state of the art and future perspectives[J].Rev Physiol Biochem Pharmacol,2003,146:1-53.DOI:10.1007/s10254-002-0001-x.
[5] WONG E,GIANDOMENICO C M.Current status of platinum-based antitumor drugs[J].Chem Rev,1999,99(9):2451-2466.DOI:10.1021/cr980420v.
[6] GAO E J,LIU C,ZHU M C,et al.Current development of Pd(Ⅱ)complexes as potential antitumor agents[J].Anti-Cancer AgentS in Medicinal Chemistry,2009,9(3):356-368.DOI:10.2174/1871520610909030356.
[7] RAU T,ALSFASSER R,ZAHL A,et al.Structural and kinetic studies on the formation of platinum(Ⅱ)and palladium(Ⅱ)complexes with l-cysteine-derived ligands[J].Inorg Chem,1998,37(17):4223-4230.DOI:10.1021/ic9711574.
[8] KAPDI A R,FAIRLAMB I J S.Anti-cancer palladium complexes:a focus on PdX2L2,palladacycles and related complexes[J].Chem Soc Rev,2014,43:4751-4777.DOI:10.1039/c4cs00063c.
[9] 馬麗麗,彭文,王晉杰,等.鈀(Ⅱ)類抗腫瘤藥物研究進展[J].中國科學:化學,2014,44(3):1-14.
[10] SHEIKH J,PARVEZ A,JUNEJA H,et al.Synthesis,biopharmaceutical characterization,antimicrobial and antioxidant activities of 1-(4′-O-β-D-glucopyranosyloxy-2′-hydroxyphenyl)-3-aryl-propane-1,3-diones[J].Eur J Med Chem,2011,46(4):1390-1399.DOI:10.1016/j.ejmech.2011.01.068
[11] WILSON J J,LIPPARD S J.In Vitro anticancer activity of cis-diammineplatinum(Ⅱ)complexes withβ-diketonate leaving group ligands[J].J Med Chem,2012,55(11):5326-5336.DOI:10.1021/jm3002857.
[12] ALMEIDA J D C,PAIXAO D A,MARZANO I M,et al.Copper(Ⅱ)complexes withβ-diketones andN-donor heterocyclic ligands:Crystal structure,spectral properties,and cytotoxic activity[J].Polyhedron,2015,89(29):1-8.DOI:10.1016/j.poly.2014.12.026.
[13] LOPESA P S,PAIXAO D A,PAULAB F C S,et al.A new copper(Ⅱ)complex with 2-thenoyltrifluoroacetone and 2,2-bipyridine:Crystal structure,spectral properties and cytotoxic activity[J].J Mol Struct,2013,1034(27):84-88.DOI:10.1016/j.molstruc.2012.09.022.
[14] HUSSAIN A,GADADHAR S,GOSWAMI T K.Photo-induced DNA cleavage activity and remarkable photocytotoxicity of lanthanide(Ⅲ) complexes of a polypyridyl ligand[J].Dalton Trans,2012,41:885-895.DOI:10.1039/c1dt11400j.
[15] ZHANG K Z,CUI S S,WANG J J,et al.Study on antitumor activity of metal-based diketone complexes[J].Med Chem Res,2012,21(7):1071-1076.DOI:10.1007/s00044-011-9618-0.
[16] VOCK C A,RENFREW A K,SCOPELLITI R,et al.Influence of the diketonato ligand on the cytotoxicities of[Ru(η6-p-cymene)(R2acac)(PTA)]+complexes(PTA=1,3,5-triaza-7-phosphaadamantane)[J].Eur J Inorg Chem,2008(10):1661-1671.DOI:10.1002/ejic.200701291.
[17] SERSEN S,KLJUN J,KRYEZIU K,et al.Structure-related mode-of-action differences of anticancer organoruthenium complexes withβ-diketonates[J].J Med Chem,2015,58(9):3984-3996.DOI:10.1021/acs.jmedchem.5b00288.
[18] WIMMER S,CASTAN P,WIMMER F L,et al.Preparation and interconversion of dimeric di-μ-hydroxo and tri-μ-hydroxo complexes of platinum(Ⅱ)and palladium(Ⅱ)with 2,2′-bipyridine and 1,10-phenanthroline[J].J Chem Soc Dalton Trans,1989,3:403-412.DOI:10.1039/dt9890000403.
[19] GAO Mingzhang,WANG Min,MILLER K D,et al.Synthesis and preliminary in vitro biological evaluation of new carbon-11-labeled celecoxib derivatives as candidate PET tracers for imaging of COX-2 expression in cancer[J].Eur J Med Chem,2011,46(9):4760-4767.DOI:10.1016/j.ejmech.2011.05.024.
[20] MOSMSNN T.Rapid colorimetric assay for cellular growth and survival:Application to proliferation and cytotoxicity assays[J].J Immunol Methods,1983,65(1-2):55-63.DOI:10.1016/0022-1759(83)90303-4.
(責任編輯:梁俊紅)
Synthesis,characterization and cytotoxicity of palladium(Ⅱ)complexes withβ-diketonate ligands functionalized with trifluoromethyl group and 2,2’-bipyridine
YANG Yaxing,DUAN Xiaobo,DUAN Fei,LI Shenghui,WANG Shuxiang,ZHANG Jinchao
(College of Chemistry and Environment Science,Hebei University,Baoding 071002,China)
A novel series of palladium(Ⅱ)complexes withβ-diketonate ligands functionalized with trifluoromethyl group and 2,2’-bipyridine(bipy)have been synthesized through a directed self-assembly approach that involves spontaneous deprotonation of theβ-diketone ligands in H2O/acetone solution.These complexes have been characterized by elemental analysis,IR,1H NMR,and HRMS.Crystal structure of 3g has been determined by X-ray diffraction analysis.The cytotoxicity was tested by MTT assay.The preliminary results showed that most of the obtained complexes were more toxic against MCF-7 and Hela than A549 cells.The cytotoxicity of complexes 3a is almost equal to that of cisplatin against MCF-7.
palladium(Ⅱ)complexes;β-diketone;trifluoromethyl;bipyridine;cytotoxicity
10.3969/j.issn.1000-1565.2017.02.005
2016-08-23
河北省自然科學基金資助項目(B2015201213);河北省應用基礎研究計劃重點基礎研究項目(15962602D)
楊亞星(1990—),女,河北保定人,河北大學在讀碩士研究生.E-mail:yangyaxingo@163.com
李勝輝(1972—),男,河北元氏人,河北大學教授,主要從事抗腫瘤藥物研究.E-mail:lish@hbu.edu.cn 張金超(1969—),男,河北衡水人,河北大學教授,主要從事納米醫學研究.E-mail:jczhang6970@163.com
O621
A
1000-1565(2017)02-0134-07