梁小林 李靜 郭敏
摘 要 根據更新幾何過程的定義和性質,運用lasso類方法構建模型獲取其參數估計,并通過數值模擬進行檢驗,驗證了該方法是有效的.在具有不同更新幾何過程比率的條件下,比較了lasso和自適用 lasso兩種方法的估計,結果表明自適用lasso方法更適合更新幾何過程的參數估計.
關鍵詞 數理統計;參數估計;lasso類方法;更新幾何過程
中圖分類號 O212;O213.2文獻標識碼 A
Abstract According to the definition and the properties of renewal-geometric process ,the Lasso type method was used to establish a model for the parameter estimation.Some simulation experiments were performed in the test,and the results show that the proposed method is effective.This article compared the performance of Lasso and adaptive Lasso method in different rates,which shows that adaptive Lasso method is more suitable for renewal-geometric process in parametric estimations.
Key words mathematical statistics;parametric estimation;lasso-type method;renewal-geometric process
1 引 言
基于維修問題中的“修復非新”現象,Lam(1988)[1]首次提出了一類單調的隨機過程模型,即幾何過程模型.對于幾何過程的參數估計,Lam(2007)[2]利用對數變換將幾何過程的參數估計問題轉化為線性回歸參數估計問題,獲得了幾何過程的非參數估計.然而,系統多樣性和環境的隨機性決定了單調幾何過程的局限性.為了得到更貼近實際問題的維修模型,梁小林(2015)等[3]提出了基于分階段退化思想的更新幾何過程模型,并對更新幾何過程的相關性質進行研究,Niu(2016)等[4]利用更新幾何過程研究了維修問題中的最優更換策略.更新幾何過程的應用決定了參數估計的重要.根據更新幾何過程的特點,以幾何過程的非參數估計為基礎,構建了分階段線性回歸的參數估計模型,并將其轉化為lasso型問題,同時進行變量選擇與參數估計從而得出相關參數的有效估計.
2 lasso與自適用lasso
2.1 lasso
一般最小二乘估計是通過最小化殘差平方和得到的,但一般的最小二乘估計存在不足,首先是預測精度不夠,最小二乘具有低偏移和高方差性,其次是它的模型可解釋性不強.Tibshirani(1996)[5]打破傳統模型選擇思維,提出了新的的變量選擇技術lasso.lasso是在一般線性最小二乘的前提下加了約束,使各系數的絕對值之和小于某一常數,由于這個約束的自然屬性,使得該回歸模型得出的回歸系數有的可能為零,因此便于選擇變量與解釋模型.
6 結束語
對于更新幾何過程基于lasso和自適用lasso的參數估計方法,隨機模擬結果驗證了此方法的可行性,進一步表明自適用lasso方法更優.雖然lasso類方法具有同時變量選擇和參數估計的優良性質,但對于更新幾何過程模型,還存在著需要改進的地方.如a=1的情況需要另做考慮,變量選擇的準確性還有待提高,參數估計的性質需要進一步研究等.
參考文獻
[1] LYEH.Geometric processes and replacement problem[J].Acta Mathematicae Applicatae Sinica,1988,4(4):366-377.
[2] L YEH.Nonparametric inference for geometric processes[J].Communication in Statistics.-Theory and Methods,2007,21(7):2083-2105.
[3] 梁小林,牛彩云,田學.更新幾何過程及相關性質[J].應用概率統計,2015,31(4):384-394.
[4] CY NIU,X L LIANG,B GE,X TIAN,Y W CHEN .Optimal replacement policy for a repairable system with deterioration based on a renewal-geometric process[J]. Annals of Operations Research,2016:244(1):49-66.
[5] R TIBSHIRANI.Regression shrinkage and selection via the lasso: a retrospective[J].Journal of the Royal Statistical Society,2011,73(3):273–282.
[6] H ZOU .The adaptive LASSO ad its oracle properties[J].Journal of the American Statistical Association,2006,101(12):1418-1429.
[7] Z HARCHAOUI,C LEVY-LEDUC .Catching change points with Lasso[C].Advances in Neural Information Processing System,Vancouver:MIT Press,2007,22: 617-624.
[8] Z HARCHAOUI,C LEVY-LEDUC.Multiple change-point estimation with a total variation penalty[J].Journal of the American Statistical Association,2010,105(492): 1480-1493.
[9] G CIUPERCA .Model selection by Lasso methods in a change-point model [J].Statistical Papers,2014,52(2):349-374.