劉建國+楊衛國



摘要對于齊次馬氏鏈由有限狀態推廣到可列的情形,由于可列和與極限運算不能交換,與文中證明方法與有限情形不同. 利用了二元函數延遲平均的強極限定理和條件期望的平滑性,研究可列齊次馬氏鏈狀態出現頻率延遲平均的強大數定律.
關鍵詞齊次馬氏鏈;強大數定律;平滑性
中圖分類號O211.62文獻標識碼A
由于p是關于π的C強遍歷的,當N充分大時。可知上式右端充分小,由(13)和(14)可知式(7)成立. 定理證畢.
參考文獻
[1]Lssacson D L,Madsen R W. Markov Chains Theory and Application[M] . New York :John Wiley & Sons , 1976:184.
[2]Gut A,Stradtmuller U. On the strong law of large numbers for delayed sums and random fields[J].Acta Mathematica Hungarica.2010,129(1/2):182-203.
[3]Huang H L,Yang W G,Shi Z Y. The Central Limit Theorem for Nonhomogemeous Markov Chains[J]. Applied probability and Statistics , 2013,9(4):337-347.
[4]王蓓,石志嚴.可列非齊次循環馬氏鏈的遍歷性[J]. 江蘇大學報,2013,34(6):741-744.
[5]吳玉,范愛華. 關于可列非齊次馬氏鏈的若干極限定理[J]. 純粹數學與應用數學, 2015,31(2):182-193.
[6]Wang Z Z,Yang W G. The generalized entropy theorem for nonhomogeneous markov chains[J]. Journal of Theoretical Probability , 2016,29(3):761-775.
[7]Yang W. Strong law of large numbers for countable nonhomogeneous markov chains[J] . Linear Algebra and Its Application,2009,430(11/12):3008-3018.
[8]Yang W. The asymptotic equipartion property for nonhomogeneous markov Informance sources[J]. Probability Engineer Inform and its Ational Sciences,1998,12(4):509-518.
[9]Yang W G,Tao L L,Cheng X J. On the almost everywhere convergence for arbitrary stochastic sequence[J].Acta Mathematica Scientia,2014,34(5):1634-1642.
[10]Yang W G. Covergence in the Cesaro sense and strong law of large numbers for Nonhomogeneous Markov chains[J].Linear Algebra and its Applications,2002,354(1):275-288.