999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一類非線性偏微分方程的多孤子解

2017-04-05 07:56:07張智欣
關(guān)鍵詞:數(shù)理方法

李 偉,張智欣

(渤海大學(xué) 數(shù)理學(xué)院,遼寧 錦州 121013)

一類非線性偏微分方程的多孤子解

李 偉,張智欣

(渤海大學(xué) 數(shù)理學(xué)院,遼寧 錦州 121013)

許多重要的自然科學(xué)問題和工程問題都可以歸結(jié)為非線性偏微分方程。從傳統(tǒng)的角度來看,非線性偏微分方程的多孤子解是很難得到的。經(jīng)過幾十年的研究和探索,已經(jīng)發(fā)現(xiàn)了一些構(gòu)造精確解的方法。借助于科爾-霍普夫變換和Af+B=0方法,獲得了Burgers方程和KP方程的多孤子解。該方法能夠解決一系列偏微分方程。

科爾-霍普夫變換;Af+B=0方法;多孤子解

1 Introduction

Soliton is an important feature of nonlinearity and can be found in many scientific applications.Many systematic methods are used for studying the nonlinear evolution equations that give rise to solitons.The inverse scattering method, the Backlund transformation method, the Darboux transformation method, the Hirota bilinear method[1-5], and the Hereman-Nuseir method[6] are the most commonly used methods.The Hirota’s bilinear method is rather heuristic and possesses significant features that make it practical for the determination of multiple soliton solutions[7-13].developed a modified form of the Hirota’s method that facilitates the computational work.The computer symbolic systems such as Maple, Mathematica can be used to overcome the tedious calculations.

In this work, we will examine two kinds of equations that play a significant role in this field.The Burgers equation, theKPequation that will be examined, reads

(1)

(2)

In this work we will employ the Cole-Hopf transformation method and theAf+B=0 method to handle these two equations.We aim to obtain multiple-kink solutions for each equation.

2 The Af+B=0 method

We will consider the NPED

(3)

Our specific practice:

We first use the Cole-Hopf transformation

(4)

that will carry (3) to

Af+B=0

(5)

whereA,Bare the functions offx,ft,fxx,ftt,fxt, …, do not containf.

We set up

(6)

then the solution of (6) is solution of(5).

1) for single solution, we use

(7)

Substituting (7) into (6) and solvingr1, we findr1=r1(p1).

2) for two-solition solutions, we use

(8)

Substituting (8) into (5) and solvinga12, we finda12=a12(p1,p2).

3) for three-solition solutions, we use

(9)

Substituting (9) into (5) and solvingb123, we findb123=b123(p1,p2,p3).

3 The Burgers equation

We first use the Cole-Hopf transformation

that will carry (1) to

(11)

We set up

(12)

For single solution, we use

(13)

Substituting (13) into (12) and solving r1, we find

(14)

wherep1is arbitrary constant.

Substituting (13) and (14) into (10) give the single-kink solution

(15)

Therefore, we assume that the two-kink solutions for

(16)

wherep1,p2are arbitrary constants.

Substituting (16) into (11) and solvinga12, we find

(17)

Substituting (16) and (17) into (10) give the two-kink solutions

(18)

For three-solition solutions, we set

(19)

Substituting (19) into (11) and solvingb123, we find

(20)

Substituting (19) and (20) into (10) give the three-kink solutions

(21)

4 The KP equation

We use the Cole-Hopf transformation

(22)

that will carry the KP equation(2) to

(23)

We set up

(24)

For single solution, we use

(25)

Substituting (25) into (24) and solvingr1, we find

(26)

wherep1,q1are arbitrary constants.

Substituting (25) and (26) into (22) give the single-kink solution

(27)

Therefore, we assume that the two-kink solutions for

(28)

wherep1,p2are arbitrary constants.

Substituting (28) into (23) and solvinga12, we find

(29)

Substituting (28) and (29) into (22) give the two-kink solutions

(30)

wherep1,p2are arbitrary constants.

For three-solition solutions, we set

(31)

Substituting (31) into (23) and solvingb123, we find

(32)

Substituting (31) and (32) into (22) give the three-kink solutions

(33)

wherepi(i=1, 2, 3) are arbitrary constants.

5 Discussions

Two models, the Burgers equation, and theKPequation are studied.Multiple-kink solutions are formally derived for each equation.The results obstained we generalized to some equation.

[1] ABLOWITZ M J,KAUP D J,NEWELL A C,et al.The Inverse scattering transform Fourier analysis for nonlinear problems Stud[J].Appl Math,1974,53:249-315.

[2] ESTEVEZ P G,CONDE E,GORDOA P R.Unified approach to Miura,Backlund and Draboux transformations for nonlinear partial differential equations[J].Nonlinear Math.Phys.1998,5(1):82-114.

[3] HIROTA R.The Direct Method in Soliton Theory[M].Cambridge:Cambridge University Press,2004.

[4] HIROTA R.Exact solutions of the Korteweg de Vries equation for multiple collisions of solitons[J].Phys Rev Lett,1971,27(18):1192-1194.

[5] HIROTA R,SATSUMA J.N-soliton solutions of model equations for shallow water waves[J].Phys Soc Jpn,1976,40(2):611-612.

[6] HEREMAN W,NUSEIR A.Symbolic methods to construct exact solutions of nonlinear partial differential equations[J].Math Comput Simul,1997,43:105-109.

[7] MATSUNO Y.Bilinear Transformation Method[M].[s.n.]:Academic Press,1984.

[8] WAZWAZ A M.Integrable (2+1)-dimensional and (3+1)-dimensional breaking soliton equations[J].Phys Scripta,2010,81:035005.

[9] WAZWAZ A M.Multiple soliton solutions for coupled KdV and coupled KP Systems[J].Can J Phys,2010,87(12):1227-1232.

[10]WAZWAZ A M.Multiple soliton solutions for the (2+1)-dimensional asymmetric Nizhanik-Novikov-Veselov equation Nonlinear Anal[J].Theory Meth Appl,2010,72:1314-1318.

[11]WAZWAZ A M.The (2+1) and (3+1)-dimensional CBS equation:multiple soliton solutions and multiple singular soliton solutions.Multiple Zeitschrift fur Naturforschung A (ZNA),2010,65a:173-181.

[12]WAZWAZ A M.The Hirota’s direct method for multiple-soliton solutions for three model equations of shallow water waves[J].Appl Math Comput,2008,201:489-503.

[13]WAZWAZ A M.Solitary wave solutions of the the generalized shallow water wave (GSWW) equation by Hirota’s method,tanh-coth method and expfunction method[J].Appl Math Comput,2008,202:275-286.

(責(zé)任編輯 陳 艷)

N-Soliton Solutions for a Class of Nonlinear Partial Differential Equations

LI Wei,ZHANG Zhi-xin

(College of Mathematical, Bohai University, Jinzhou 121013, China)

Many significant natural science and engineering problems can be attributed to nonlinear partial differential equation. From the traditional point of view, n-soliton solutions of partial differential equation are hard to get. After several decades of research and exploration, we have found some tectonic exact solution method. With the help of Cole-Hopf transformation method and theAf+B=0 method, n-soliton solutions of the Burgers equation and the KP equation were presented. This method could solve a series of partial differential equations.

the Cole-Hopf transformation;Af+B=0 method; multiple-soliton solution

2016-11-24 基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(11547005)

李偉(1977—),男, 遼寧錦州人,碩士,主要從事偏微分方程研究, E-mail:1344462965@qq.com。

李偉,張智欣.一類非線性偏微分方程的多孤子解[J].重慶理工大學(xué)學(xué)報(bào)(自然科學(xué)),2017(3):171-174.

format:LI Wei,ZHANG Zhi-xin.N-Soliton Solutions for a Class of Nonlinear Partial Differential Equations[J].Journal of Chongqing University of Technology(Natural Science),2017(3):171-174.

10.3969/j.issn.1674-8425(z).2017.03.026

O175.2

A

1674-8425(2017)03-0171-04

猜你喜歡
數(shù)理方法
踐行“德融數(shù)理” 打造“行知樂園”
循序力行,讓“德融數(shù)理”落地生根
數(shù)理:多少人吃飯
孩子(2019年9期)2019-11-07 01:35:49
柳宗悅民藝思想中的“數(shù)理”觀
學(xué)習(xí)方法
最天然呆筆記 誰(shuí)說數(shù)理就一定枯燥艱深?
用對(duì)方法才能瘦
Coco薇(2016年2期)2016-03-22 02:42:52
四大方法 教你不再“坐以待病”!
Coco薇(2015年1期)2015-08-13 02:47:34
賺錢方法
捕魚
主站蜘蛛池模板: 国产在线98福利播放视频免费| av色爱 天堂网| 日韩精品一区二区三区视频免费看| 在线亚洲小视频| 亚洲欧洲免费视频| 99久久精品国产综合婷婷| 国产精品大尺度尺度视频| 99热这里只有精品久久免费| 欧美性久久久久| 综合五月天网| 午夜无码一区二区三区| 欧美精品成人| 亚洲第一天堂无码专区| 色视频国产| 日韩av无码DVD| 欧美国产日韩在线播放| 国产精品久久久久鬼色| 91小视频在线观看| 国产欧美日韩在线在线不卡视频| 97视频免费看| 国产欧美视频一区二区三区| www.99在线观看| 成人福利在线观看| 一级一级一片免费| 精品人妻一区无码视频| 蝌蚪国产精品视频第一页| 1769国产精品免费视频| 欧美亚洲一二三区| 国产白浆一区二区三区视频在线| 国产激情无码一区二区APP| 99精品在线看| 就去吻亚洲精品国产欧美| 日本午夜影院| 亚洲色大成网站www国产| 全色黄大色大片免费久久老太| 色久综合在线| 国产成人午夜福利免费无码r| 大陆国产精品视频| 日韩欧美中文| 911亚洲精品| 免费高清毛片| 911亚洲精品| 不卡无码网| 久久中文电影| 成人综合在线观看| 又黄又湿又爽的视频| 国产99热| 狠狠色综合久久狠狠色综合| 国产精品免费电影| 色婷婷丁香| 99精品高清在线播放| 久久99蜜桃精品久久久久小说| 精品视频第一页| 亚洲精品在线影院| 在线国产毛片| 久久国产热| 亚洲乱码在线视频| 18禁不卡免费网站| 国产伦片中文免费观看| 国产精品冒白浆免费视频| 中文字幕第1页在线播| 99九九成人免费视频精品| 99偷拍视频精品一区二区| 国产精品成人啪精品视频| 毛片基地美国正在播放亚洲 | 日韩在线第三页| 亚洲欧洲日韩综合色天使| 97精品久久久大香线焦| 国产丝袜啪啪| 国产91精品久久| 亚洲av色吊丝无码| 久久精品欧美一区二区| 婷婷午夜天| 久久人人妻人人爽人人卡片av| 亚洲综合婷婷激情| 国产高清在线观看| 成人日韩欧美| 国产精品开放后亚洲| 国产精品刺激对白在线| 国产精品深爱在线| 99在线视频免费| 成人午夜天|