王海陽,劉燕德,張宇翔
?
表面增強拉曼光譜檢測臍橙果皮混合農藥殘留
王海陽,劉燕德※,張宇翔
(華東交通大學機電與車輛工程學院,光機電技術及應用研究所,南昌 330013)
為了研究果皮農藥殘留快速檢測方法。該文以臍橙為例,混合農藥(亞胺硫磷和樂果)為研究對象,選用銀納米線作為增強基底,利用共焦顯微拉曼光譜儀對農藥殘留進行檢測。通過表面增強拉曼光譜(surface enhanced Raman scattering,SERS)技術,采集臍橙表皮混合農藥殘留的SERS光譜。對混合農藥定性分析,銀納米線對2種農藥都有較好的增強效果。對采集的光譜進行預處理后,建立模型,進行定量分析,研究結果表明,經過二階微分預處理后光譜數據結合偏最小二乘法(partial least squares,PLS)得到的模型預測效果最好,預測相關系數(R)為0.954,其預測均方根誤差(root-mean-square prediction error,RMSEP)為4.822 mg/L。挑選兩種農藥特征峰的特征波段,混合農藥中亞胺硫磷的特征波段經多元散射校正(multiplicative scatter correction,MSC)處理后,建模效果較好,其中R為0.898,RMSEP為6.621 mg/L;混合農藥中樂果的特征波段經基線校正處理后,建模效果較好,其中R為0.911,RMSEP為7.369 mg/L。研究結果表明SERS技術是一種快速、可靠的檢測混合農藥殘留的方法。
農藥;光譜分析;模型;表面增強拉曼光譜;偏最小二乘法
中國是農業大國,農業作為第一產業在國民經濟中所占比例較大,所以每年需要使用大量的農藥來保證農作物的產量[1]。農藥好比一把雙刃劍,雖然能夠防治病蟲害,但也會威脅生命健康。目前各國對農產品中農藥殘留的要求越來越嚴格,中國農產品存在的重要問題是農產品中農藥殘留超標,并且農作物上的農藥殘留種類十分復雜,檢測需要借助大型儀器[2-5]。因農藥自身存在毒性,外加不合理使用,所以,為提升食用安全,圍繞農產品開展農殘檢測至關重要。
目前常規農藥殘留檢測方法主要包括氣相色譜(gas chromatography,GC)[6-8]、高效液相色譜(high performance liquid chromatography,HPLC)[9]、液-質聯用(liquid chromatography with mass spectrometry,LC/MS)法[10-11]酶聯免疫吸附法[12]、近紅外光譜法[13]、熒光光譜法[14]等,這些方法雖然穩定可靠且重復性好,但這些方法都需要對樣品進行一系列的前處理,樣品大都是破壞性的,用于實際殘留量測量時不但費時費力,而且結果也不理想。
拉曼光譜是研究分子振動、轉動的一種光譜方法,其優點是無損、快速、不受水環境干擾,目前已廣泛應用于各個學科[15]。表面增強拉曼散射(serface enhanced Raman scattering,SERS)是吸附在特定納米級粗糙界面的分析物的拉曼散射被極大增強的一種效應[16],相對于普通拉曼光譜,SERS具有百萬級的光譜增強能力。SERS 技術具有分析速度快、所需樣品濃度低、樣品無需預處理、不需破壞樣品、靈敏度較高、水溶液體系對拉曼測試無干擾等優點,是一種快速發展,逐漸成熟、超靈敏的前沿表征技術[17],引起了科學家們廣泛的研究興趣。Liu等[18-23]利用不同基底如金膠、銀膠、Klarite芯片等將表面增強拉曼光譜與化學計量學相結合檢測了臍橙果皮亞胺硫磷、樂果、毒死蜱等農藥殘留,得到較好的效果。李俊杰等[24]采用表面增強拉曼光譜技術結合化學計量方法快速分析臍橙果皮中的三唑磷農藥殘留,建立臍橙果皮中三唑磷農藥殘留的偏最小二乘法預測模型,模型預測能力和重現性良好。王曉彬等[25]采用表面增強拉曼光譜(SERS)技術結合快速溶劑前處理方法建立臍橙果肉中三唑磷農藥的快速檢測方法,以臍橙果肉提取液為基質的三唑磷溶液最低檢測質量濃度為0.5 mg/L。李俊杰等[26]采用表面增強拉曼光譜技術快速分析臍橙果肉中的噻菌靈農藥殘留,對以臍橙果肉提取液為基質的不同濃度噻菌靈溶液的SERS光譜進行分析,利用該方法快速檢測臍橙果肉中噻菌靈,最低檢測質量分數為5 mg/kg。劉培培等[27]以銀鏡為表面增強拉曼活性增強基底,檢測農藥敵草快,得到較好的效果,檢測限可以達到10-8mol/L。黃梅英等[28]以金納米粒子為活性基底,直接檢測食品中游離香豆素,在質量濃度范圍1.0~100.0 mg/L的線性相關系數為0.9987,檢出限為0.91 mg/L,可以實現香豆素的快速檢測。Pan等[29]將聚苯乙烯/銀(PS/銀)納米顆粒作為SERS增強基底檢測有機磷殺蟲劑,其中有機磷氧磷的檢測限是96 nmol/L,殺螟松的檢測限是34 nmol/L。Fateixa等[30]以基于銀納米粒子和明膠A的表面增強拉曼散射技術檢測二乙基二硫代氨基甲酸鈉,檢測限可達10-5mol/L,該銀納米材料具有一定SERS活性,可用于定性檢測。
本文采用SERS光譜技術,銀納米線作為SERS基底,以混合農藥(亞胺硫磷和樂果混合)為研究對象,萃取出臍橙表皮的農藥殘留溶液,采集農藥殘留溶液的拉曼光譜,結合化學計量學方法對采集的拉曼光譜經預處理后,建立模型,從而實現混合農藥的定性和定量分析,以期為混合農藥殘留檢測提供參考。
1.1 儀器與材料
采用德國布魯克公司的SENTERRA型共聚焦顯微拉曼光譜儀,激光波長為785 nm,積分時間為10 s,激光功率選擇10 mw。
純度99.7%的亞胺硫磷(粉末)和純度99.5%的樂果(粉末)購于阿拉丁試劑(上海)有限公司;超純水作為試驗用水;贛南臍橙購于南昌農貿市場。
銀納米線的制備:稱取0.509 4 g AgNO3加入15 mL乙二醇中,混合均勻得到0.2 mol/L的AgNO3溶液;稱取0.499 5 g的聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)加入15 mL分析純乙二醇中,混合均勻得到0.3 mol/L的PVP溶液。將AgNO3溶液與PVP溶液均勻混合后,緩慢滴加到30 mL乙二醇中,保持溫度160 ℃,持續加熱至混合溶液顏色變為不透明的灰色。冷卻至20 ℃后,用乙醇和丙酮離心洗滌[31]。所制備的銀納米線紫外光譜圖如圖1a所示,銀納米線在300~400 nm間有2個吸收峰。銀納米線的掃描電鏡圖如圖1b所示,銀納米線的直徑約為70 nm。

a. 銀納米線的紫外吸收光譜圖a. UV absorption spectra of Ag nanowiresb. 銀納米線的掃描電鏡圖b. SEM image of Ag nanowires
1.2 樣品的制備
以臍橙為試驗載體,分析亞胺硫磷和樂果混合農藥在其表皮萃取后的溶液。首先,將臍橙表皮清洗干凈后擦干,切成若干面積(2 cm×2 cm)、質量約為2 g的小塊。分別用移液槍移取0.5 mL亞胺硫磷和0.5 mL樂果的農藥樣品標準溶液(5 000 mg/L)于臍橙表皮小塊上,風干。將小塊臍橙表皮切碎放入燒杯中,加入乙腈10 mL,依次攪拌(20 min)、超聲(20 min)、震蕩、過濾,得到農藥殘留溶液。以甲醇和超純水稀釋萃取液,得到亞胺硫磷和樂果質量濃度均為10~60 mg/L的26個均勻濃度梯度的混合農藥殘留萃取溶液。
1.3 拉曼光譜采集
以銀納米線為增強基底,用移液槍取5L銀納米線溶液滴到預先洗凈的石英片上,晾干后做基底。取5L待測樣品溶液,滴在已晾干的基底上,晾干后采集其SERS光譜,每個樣品均采集5條有效SERS光譜。
2.1 基于銀納米線的混合農藥殘留定性分析
以銀納米線為增強基底,采集臍橙表皮亞胺硫磷和樂果混合農藥殘留的表面增強拉曼光譜,并與亞胺硫磷和樂果粉末的拉曼光譜對比,如圖2所示。
由圖2可以看出,雖然兩種農藥互相會產生一定干擾,但銀納米線對兩種農藥均有增強作用,混合農藥的譜峰峰位歸屬分別參照兩種農藥的譜峰歸屬。在圖2中,排除銀納米線基底的影響,混合農藥增強的峰位有352、406、510、607、712、772、978、1 015、1 189、1 330、1 602 cm-1。501 cm-1處的振動峰同時是亞胺硫磷和樂果的特征峰,501 cm-1附近的CH3扭轉振動峰紅移至510 cm-1。其中359、605、712、977、1 016、1 188、1 611 cm-1處為亞胺硫磷的特征峰,359 cm-1附近的骨架變形振動峰藍移至352 cm-1,605 cm-1附近的環變形振動峰紅移至607 cm-1,712 cm-1附近的CH面外變形振動峰不變,977 cm-1附近的C-C-O伸縮振動峰紅移至978 cm-1,1 016 cm-1附近的骨架伸縮振動峰藍移至1015 cm-1,1 611 m-1附近的C=N伸縮振動峰藍移至1 602 cm-1。407、766、1 328 cm-1處為樂果的特征峰,407 cm-1附近的P-O-C形變振動峰藍移至406 cm-1,766 cm-1附近的P-O-C伸縮振動峰紅移至772 cm-1,1 328 cm-1附近的CH變形振動峰紅移至1 330 cm-1。
2.2 基于銀納米線的混合農藥殘留的定量分析
將配置好的26個不同濃度臍橙表皮混合農藥殘留樣品,濃度范圍為10~60 mg/L,每個樣品采集5條SERS光譜,光譜范圍選擇300~2 000 cm-1,取其平均光譜,根據平均光譜建立數學模型。圖3中分別為60、40、20 mg/L混合農藥SERS光譜,從圖中可以看出銀納米線對混合農藥有一定增強,且隨著農藥濃度的逐漸增加,峰強逐漸增強。采用平滑處理(smoothing),基線校正(baseline),一階微分(1stderivatives),二階微分(2ndderivatives)4種方法對光譜數據進行預處理。基于(partial least squares,PLS)建立混合農藥的定量模型,校正集選擇19個樣品,預測集選擇7個樣品,校正集和預測集樣品的質量濃度列表如表1所示。為盡可能減弱或消除各種因素對光譜的影響,比較不同的預處理方法建模結果以優化模型,如表2所示。

表1 校正集和預測集樣品的濃度

表2 不同預處理后混合農藥殘留SERS光譜的PLS建模結果
結果表明,混合農藥原始光譜經過二階微分預處理之后,建模效果較好,其中R為0.954,RMSEP為4.822 mg/L。
結合上述預處理方法的建模結果,利用二階微分預處理方法,分別采用PLS、PCR算法對混合物農藥建立定量分析模型,并比較所建立模型的預測效果。校正集選擇19個樣品,預測集選擇7個樣品,建模結果如表3所示。

表3 不同算法混合農藥殘留的建模結果
由表3知,依據PLS算法建立的模型效果較好。混合農藥殘留中亞胺硫磷和樂果的驗證結果如圖4所示。
為了保證農藥樣品的每個特征峰均被分析,根據特征峰出現的位置對其進行人工的篩選。由于混合農藥增強的峰位有352、406、510、607、712、772、978、1 015、1 189、1 330、1 602 cm-1,為了保證所有不同濃度的農藥樣品的特征峰均被分析,結合各濃度的混合農藥SERS光譜,根據這11個特征峰分別選擇7個波段作為特征波段,其中亞胺硫磷對應的波段為:347~357,602~612,973~983,1 010~1 020,1 184~1 194 cm-1;樂果對應的波段為:401~411,767~777 cm-1。分別對應兩種農藥的特征波段,基于PLS算法建立定量模型,其中19個樣品為校正集,7個樣品為預測集。由表4可以看出,混合農藥中亞胺硫磷的特征波段經基線校正處理后,建模效果較好,其中R為0.898,RMSEP為6.621 mg/L,混合農藥中亞胺硫磷的預測結果如圖4a所示;由表5可以看出,混合農藥中樂果的特征波段經多元散射校正處理后,建模效果較好,其中R為0.911,RMSEP為7.369 mg/L,混合農藥中樂果的預測結果如圖4b所示。

表4 PLS算法用于混合農藥殘留SERS光譜中亞胺硫磷特征波段的建模結果

表5 PLS算法用于混合農藥殘留SERS光譜中樂果特征波段的建模結果
本文通過運用共焦顯微拉曼光譜儀對臍橙表皮混合農藥萃取液進行光譜采集。對原始光譜數據運用不同預處理方法進行處理,并通過偏最小二乘法(partial least squares,PLS)建立模型,結果表明,經過二階微分預處理后的光譜數據結合PLS算法得到的模型預測效果最好,預測相關系數(R)為0.954,其預測均方根誤差(Root mean square error of prediction, RMSEP)為4.822 mg/L。挑選兩種農藥特征峰的特征波段,其中亞胺硫磷對應的波段為:602~612,707~717,1 009 ~1 019,1 262~1 272 cm-1;樂果對應的波段為:400~410,765~775,1 151~1 161 cm-1。混合農藥中亞胺硫磷的特征波段經基線校正處理后,建模效果較好,其中R為0.898,RMSEP為6.621 mg/L;混合農藥中樂果的特征波段經多元散射校正處理后,建模效果較好,其中R為0.911,RMSEP為7.369 mg/L。通過對臍橙表皮農藥殘留的SERS檢測,結合化學計量學方法對采集的拉曼光譜經預處理后,建立模型,從而實現混合農藥進行定性和定量分析。
[1] 孫沫. 加強農藥殘留監測確保食品質量安全[J]. 吉林農業,2016(3):70.
Sun Mo. Strengthen the detection of pesticide residues to ensure the quality and safety of food[J]. Jilin Agriculture, 2016(3): 70. (in Chinese with English abstract)
[2] Lisec J, Schauer N, Kopka J, et al. Gas chromatography mass spectrometry-based metabolite profiling in plants[J]. Nature Protocol, 2006, 1(1): 387-396.
[3] Tan G, Yang T, Miao H, et al. Characterization of compounds in psoralea corylifolia using high-performance liquid chromatography diode array detection, time-of-flight mass spectrometry and quadrupole ion trap mass spectrometry[J]. Journal of Chromatographic Science, 2015, 53(9): 1455-1462.
[4] 羅彥波,鄭浩博,姜興益,等. 在線凝膠滲透色譜-氣相色譜-串聯質譜聯用檢測煙葉中的農藥殘留[J]. 分析化學,2015,43(10):1538-1544.
Luo Yanbo, Zheng Haobo, Jiang Xingyi, et al. Determination of pesticide residues in tobacco using modified QuEChERS procedure coupled to on-line gel permeation chromatography-gas chromatography/tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2015, 43(10): 1538-1544. (in Chinese with English abstract)
[5] 李穎暢,李作偉,呂艷芳,等. 驢血清膽堿酯酶抑制法快速檢測蔬菜中農藥殘留[J]. 食品工業科技,2013,34(3):293-295.
Li Yingchang, Li Zuowei, Lv Yanfang, et al. Rapid determination of pesticide residues in vegetables by enzyme inhibition method with cholinesterase from donkey serum[J]. Science and Technology of Food Industry, 2013, 34(3): 293-295. (in Chinese with English abstract)
[6] 季錦美. 氣相色譜法測定蔬菜中幾種農藥殘留[J]. 現代農業科技,2016(21):90-98.
Ji Jinmei, Determation of several pesticide residue in vegetables by gas chromatography[J]. Modern Agricultural Science and Technology, 2016(21): 90-98. (in Chinese with English abstract)
[7] 王麗娜,馮敏鈴,李盛安,等. 固相萃取—氣相色譜法測定農田溝渠水中6種有機磷農藥[J]. 現代農業科技,2016,20:96-97.
Wang Lina, Feng Minling, Li Shengan, et al. Determination of 6 organophosphorous pesticides in farmland ditch water by solid phase extraction-gas chromatography[J]. Modern Agricultural Science and Technology, 2016, 20: 96-97. (in Chinese with English abstract)
[8] 彭曉俊,梁偉華,彭梅,等. 固相萃取/氣相色譜法測定新會陳皮及其制品中8種有機磷農藥[J]. 分析測試學報,2016,35(10):1267-1272.
Peng Xiaojun, Liang Weihua, Pengmei, et al. Determination of 8 organophosphorous pesticides in Xinhui dried orange peel and its products by gas chromatography with solid phase extraction[J]. Journal of Instrumental Analysis, 2016, 35(10): 1267-1272. (in Chinese with English abstract)
[9] Ye Jianzhi, Lin Ling, Zha Yubing, et al. Simultaneous determination of four pesticide residues in fruit juice by HPLC[J]. Agricultural Science & Technology, 2016, 17(10): 2399-2402.
[10] 王利強,葛含光,王永芳,等. QuEChERS-高效液相色譜-串聯質譜法測定蘋果中丁醚脲及其代謝物殘留量[J]. 食品安全質量檢測學報,2015(2):436-441.
Wang Liqiang, Ge Hanguang, Wang Yongfang, et al. Determination of diafenthiuron and its metabolites residue in apple by QuEChERS-high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Food Safety & Quality, 2015(2): 436-441. (in Chinese with English abstract)
[11] Hildmann Fanny, Gottert Christina, Frenzel Thomas, et al. Pesticide residues in chicken eggs-A sample preparation methodology for analysis by gas and liquid?chromatography/tandem mass spectrometry[J]. Journal of Chromatography A, 2015, 14(3): 1-20.
[12] 馮敏,李亞楠,高麗霞,等. 酶聯免疫吸附法在食品安全性指標檢測中的研究進展[J].食品安全質量檢測學報,2016(10):3973-3979.
Feng Min, Li Yanan, Gao Lixia,et al.Advances in food safety indicators determination of enzyme-linked immunosorbent assay[J]. Journal of Food Safety & Quality, 2016(10): 3973-3979. (in Chinese with English abstract)
[13] 黎靜,薛龍,劉木華,等. 基于可見-近紅外光譜識別氧樂果污染的臍橙[J]. 農業工程學報,2010,26(2):366-369.
Li Jing, Xue Long, Liu Muhua, et al. Recognition of navel orange contaminated by omethoate based on Vis-NIR spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(2): 366-369. (in Chinese with English abstract)
[14] 薛龍,黎靜,劉木華,等. 熒光光譜檢測臍橙表面敵敵畏殘留試驗研究[J]. 江西農業大學學報,2011,33(2):394-398.
Xue Long, Li Jing, Liu Muhua, et al. A study on detection of dichlorvos residue on navel orange surface by means of fluorescence spectrum[J]. Journal of Jiangxi Agricultural University, 2011, 33(2): 394-398. (in Chinese with English abstract)
[15] 李瓊. 微型拉曼光譜儀的拉曼光譜數據處理方法研究[D]. 重慶:重慶大學,2008.
Li Qiong. Study on Data Processing of Raman Spectrum Based on Mini-Spectroscopy[D]. Chongqing: Chongqing University, 2008. (in Chinese with English abstract)
[16] Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced raman scattering[J]. Science, 1997, 275(5303): 1102-1106.
[17] Li J F, Huang Y F, Ding Y, et al.Shell-isolated nanoparticle- enhanced Raman spectroscopy[J]. Nature, 2010, 464(7287): 392-395.
[18] Liu Yande ,He Bingbing, Zhang Yuxiang, et al. Detection of phosmet residues on navel orange skin by surface-enhanced Raman spectroscopy[J] Intelligent Automation and Soft Computing. 2015, 21(3): 423-432.
[19] Liu Yande, Ye Bing, Wan Changlan, et al. Quantitative detection of pesticides by confocal microscopy Raman spectroscopy[J]. Sensor Letters, 2013, 11(6/7): 1383-1388.
[20] Liu Yande, Ye Bing, Wan Changlan, et al. Rapid quantitative analysis of dimethoate pesticide using surface-enhanced Raman spectroscopy[J]. Transactions of the ASABE, 2013, 56(3): 1043-1049.
[21] Liu Yande, He Bingbing. Quantitative of pesticide residue on the surface of navel orange by confocal microscopy Raman spectrometer[J] Journal of Innovative Optical Health Sciences, 2015, 8(2): 1550001.
[22] 劉燕德,何冰冰. 基于便攜式拉曼光譜儀的氧樂果含量定量分析[J]. 西北農林科技大學學報:自然科學版,2014,42(2):136-141.
Liu Yande, He Bingbing. Quantitative analysis of omethoate content based on portable Raman spectrometer[J]. Journal of Northwest A&F University: Natural Science Edition, 2014, 42(2): 136-141. (in Chinese with English abstract)
[23] 劉燕德,葉冰. 基于拉曼光譜技術的氧樂果含量定量分析[J]. 中國農機化學報,2014,35(1):88-92.
Liu Yande, Ye Bing. Quantitative analysis of omethoate solution content based on raman spectrometer[J]. Journal of Chinese Agricultural Mechanization, 2014, 35(1): 88-92. (in Chinese with English abstract)
[24] 李俊杰,曾海龍,劉木華,等. 臍橙果皮中三唑磷農藥殘留的表面增強拉曼光譜快速檢測研究[J]. 現代食品科技,2015,31(8):334-339.
Li Junjie, Zeng Hailong, Liu Muhua1,et al. Rapid detection of triazophos residues in navel orange peel based on surface-enhanced Raman spectroscopy[J]. Modern Food Science and Technology, 2015, 31(8): 334-339. (in Chinese with English abstract)
[25] 王曉彬,曾海龍,吳瑞梅,等. 基于SERS技術的臍橙果肉中三唑磷農藥殘留快速檢測研究[J]. 食品工業科技,2015,36(10):83-85.
Wang Xiaobin, Zeng Hailong, Wu Ruimei, et al.Study on rapid detection of triazophos residues in flesh of navel orange by SERS[J]. Science and Technology of Food Industry, 2015, 36(10): 83-85. (in Chinese with English abstract)
[26] 李俊杰,嚴霖元,劉木華,等. 臍橙果肉中噻菌靈農藥的SERS快速檢測研究[J]. 江西農業大學學報,2014(6):1229-1233.
Li Junjie, Yan Linyuan, Liu Muhua, et al. Rapid detection of thiabendazole residues in navel orange flesh by SERS[J]. Journal of Jiangxi Agricultural University, 2014(6): 1229-1233. (in Chinese with English abstract)
[27] 劉培培,韓曉霞,趙冰,等. 基于表面增強拉曼散射的敵草快檢測方法[J]. 高等學校化學學報,2015,36(8):1517-1520.
Liu Peipei, Han Xiaoxia, Zhao Bing, et al. Surface- enhanced Raman scattering- based diquat detection[J]. Chemical Journal of Chinese Universities, 2015, 36(8): 1517-1520. (in Chinese with English abstract)
[28] 黃梅英,李攻科,胡玉玲. 表面增強拉曼光譜法定量檢測食品中香豆素[J]. 分析化學,2015,43(8):1218-1223.
Huang Meiying, Li Gongke, Hu Yuling, Quantitative determination of coumarin in food by surface-enhanced Raman spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2015, 43(8): 1218-1223. (in Chinese with English abstract)
[29] Pan L, Dong R, Wu Y, et al. Polystyrene/Ag nanoparticles as dynamic surface-enhanced Raman spectroscopy substrates for sensitive detection of organophosphorus pesticides[J]. Talanta, 2014, 12(7): 269-275.
[30] Fateixa S, Soares S F, Daniel-Da-Silva A L, et al. Silver-Gelatine bionanocomposites for qualitative detection of a pesticide by SERS[J]. Analyst, 2015, 140(5): 1693-1701.
[31] Shi H Y, Hu B, Yu X C, et al. Ordering of disordered nanowires: Spontaneous formation of highly aligned, ultralong Ag nanowire films at oil-water-air interface[J]. Advanced Functional Materials, 2010, 20(6): 958-964.
Surface enhanced Raman scattering detection of mixing pesticide residual on orange peel
Wang Haiyang, Liu Yande※, Zhang Yuxiang
(,330013)
In recent years, pesticide has been mass-producing and widely used. The problem of pesticide residues has attracted more and more attention. As the problem of food safety is becoming the focus of society, the pesticide residue detection has become a research hotspot. Among numerous methods of pesticide detection,surface-enhanced Raman spectroscopy (SERS) has become an area of intense research owing to a highly sensitive probe for the trace level detection of pesticide. The spectroscopic merits of SERS are the representation in the aspects of super sensitivity, high selection and water resistance, which make it one of the most popular detection techniques currently. In this paper, the organophosphorus pesticide phosmet and dimethoate were selected as the research objects. The blended pesticide residues of phosmet and dimethoate on navel orange were detected by the SERS combined with chemometrics algorithm. The silver nanowires were used as SERS substrate to detecte pesticide residue on navel orange. Firstly, the navel orange samples were fabricated with pesticide residues. Secondly, the silver nanowires SERS substrate was fabricated. Then the sample solution to be measured was dripped onto the dried SERS substrate. When the sample was dried, spectral data were collected. The spectral data were used to analyze pesticide residue qualitatively and quantitatively. It had a better enhancement effect on the qualitative analysis of mixing pesticides for silver nanowires substrate. Pesticide original spectral data were processed by the partial least square (PLS) modeling algorithm and the different pretreatment methods. The PLS regression combined with different data preprocessing methods was used to develop quantitative models of mixing pesticide residue. And the advantages and disadvantages of the models were compared. The results showed that the model built by the PLS combined with the second derivatives data preprocessing was ideal for mixing pesticides, whose correlation coefficient (R) for the prediction was 0.954, and root mean square error of prediction (RMSEP) was 4.822 mg/L. The model combined with the baseline was ideal for phosmet, whoseRwas 0.898 and RMSEP was 6.621 mg/L. The model combined with the multiplicative scattering correction (MSC) was ideal for dimethoate, whoseRwas 0.911 and RMSEP was 7.369 mg/L. Therefore, the study combines the SERS and chemometrics algorithm to detect pesticide residues qualitatively and quantitatively, which is feasible. Raman spectroscopy can be used as a fast and simple tool to detecte mixing pesticide residues. It provides a basis for the more insightful study on pesticide residues detection.
pesticides;spectrum analysis; models; surface enhanced Raman spectroscopy (SERS); partial least squares
10.11975/j.issn.1002-6819.2017.02.040
O433.4
A
1002-6819(2017)-02-0291-06
2016-07-29
2016-11-23
南方山地果園智能化管理技術與裝備協同創新中心(贛教高字[2014]60號),華東交通大學校立科研基金項目(14JD01)資助,江西省載運工具與裝備重點實驗室資助
王海陽,女,助理實驗師,主要從事光譜檢測技術。南昌 華東交通大學機電與車輛工程學院,光機電技術及應用研究所,330013。Email:wanghaiyangjl1988@163.com .
劉燕德,女,博士,教授,主要從事光機檢測技術及應用。南昌 華東交通大學機電與車輛工程學院,光機電技術及應用研究所,330013。Email:jxliuyd@163.com.
王海陽,劉燕德,張宇翔. 表面增強拉曼光譜檢測臍橙果皮混合農藥殘留[J]. 農業工程學報,2017,33(2):291-296. doi:10.11975/j.issn.1002-6819.2017.02.040 http://www.tcsae.org
Wang Haiyang, Liu Yande, Zhang Yuxiang. Surface enhanced Raman scattering detection of mixing pesticide residual on orange peel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 291-296. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.02.040 http://www.tcsae.org