黃 河,孫 平,劉軍恒,葉 松
?
納米CeO2催化劑對柴油機碳煙顆粒和NO降低效果
黃 河,孫 平,劉軍恒※,葉 松
(江蘇大學汽車與交通工程學院,鎮江 212013)
為采取后處理技術同時控制柴油機顆粒(PM)和一氧化氮(NO)排放,該研究采用沉淀法制備了3組納米二氧化鈰(CeO2)催化劑,通過X射線衍射(XRD)法、BET法測比表面積與孔徑、氫氣程序升溫還原法(H2-TPR)對其性能進行表征,并利用碳煙起燃溫度和峰值溫度以及NO向N2的轉化率分別對催化劑進行活性評價。試驗結果表明:3組制備的CeO2催化劑平均粒徑依次為7、12和20 nm,明顯小于商業級CeO2;自制CeO2相較于商業級CeO2具有較大的比表面積,且比表面積越大催化活性越高;自制的CeO2有3個較明顯的H2還原峰,依次對應表面吸附氧、表面晶格氧以及體相晶格氧;CeO2對碳煙顆粒催化氧化的效率由高到低依次為20、12和7 nm,這3組CeO2催化劑較未添加催化劑時起燃溫度依次降低了124,109,93 ℃,峰值溫度依次降低了185,104,102 ℃;CeO2對NO轉化率最高可以達到70%,且溫度窗口比較寬。研究結果對CeO2在排放后處理領域的應用具有指導意義。
柴油機;催化劑;排放控制;顆粒物;氮氧化物
柴油機由于具備優良的經濟性、動力性和耐久性而得到了普遍的應用。然而,由于柴油機以高溫擴散燃燒為主并存在局部過濃區,因此形成了較多的顆粒物(PM)與氮氧化物(NOx),對氣候、人體健康及生態環境造成長期的影響[1]。PM主要由碳煙(soot)、可溶性有機物(soluable organic fraction,SOF)及一些硫酸鹽和金屬物質等組成,且90%多的顆粒物粒徑在1m以下[2];NOx主要組成是一氧化氮(NO)與二氧化氮(NO2),其中NO約占90%[3]。柴油機的soot和NOx排放之間存在著此長彼消的Trade-off關系,僅僅依靠機內凈化技術而同時控制它們的排放是非常困難的[4]。因此,發展新的柴油機排放控制技術用以有效降低這2種排放物已成為國內外發動機研究者關注的課題。被動再生方法則是采用化學催化技術來減少PM氧化的活化能,減小PM的著火溫度,使PM可以通過柴油機排氣溫度的自身能量而燃燒掉,達到微粒捕集器(diesel particulate filter,DPF)再生的目的[5-8];此外,通過在DPF內涂敷恰當的催化劑能夠還原轉化尾氣中的NOx,最終實現同時減小柴油機NOx和PM排放的目標,而高活性催化劑的選擇是被動再生技術的難點。
稀土基催化劑因其具有豐富的電子能級結構,表現出獨特的化學物理性質,在現有稀土氧化物中,二氧化鈰因其價格低廉、晶體結構獨特和Ce3+?Ce4+可逆轉換在催化領域備受關注[9-17],它對碳煙進行氧化催化的同時能將廢氣中的碳氫化合物(HCS)、CO和NOx轉變成H2O、CO2和N2[18-19]。CeO2作為儲氧/釋氧材料的核心,當尾氣中含氧量高時CeO2能夠快速把氧儲存起來,當含氧量低時能夠及時釋放氧,具有“氧緩沖器”的功能,這對催化劑活性的提高以及壽命的延長至關重要[20-23]。
CeO2應用在柴油機催化方面是近年的研究熱點。Ulric等[24]研究表明鈰基燃油添加劑在發動機缸內燃燒后對環境的二次污染影響可以忽略。Teraoka等[25]和Shangguan等[26]運用程序升溫反應技術以及模擬柴油機尾氣組分的方法,探討了反應器中的CeO2催化劑同干碳煙緊密相接觸時溫度變化造成的混合物反應過程,并考察了對PM降低的能力。Daturi等[27]利用H2將CeO2表面深度還原,使高濃度表面氧空穴能夠在沒有還原劑的條件下降解NOx,并通過紅外(IR)和質譜(MS)分析證實,降解NOx的活性與CeO2材料表面的氧空穴濃度及交換氧數量密切相關。
以往研究在CeO2對soot催化或者對NOx轉化單方面進行了有益的探索,但是針對CeO2同時控制柴油機PM和NOx的排放的理論與實驗研究報道較少。本文主要研究納米CeO2催化同時降低soot和NO。首先制備了3組不同微觀結構的CeO2,并通過表征手段分析了CeO2的微觀結構;其次以碳煙氧化特性以及NO轉換率對3組納米CeO2催化劑的活性進行了評價,研究其微觀結構對催化活性的影響。
1.1 催化劑制備
本文采用沉淀法制備納米CeO2催化劑,沉淀法不僅可以使原料細化和均勻混合,且具有工藝簡單、煅燒溫度低和時間短、產品性能良好等優點。沉淀法制備納米尺寸CeO2:將原料Ce(NO3)3·6H2O配成一定濃度的鹽溶液,把氨水作為沉淀劑,運用正反向沉淀的方法制備出不同微觀結構的CeO2;在配制溶液中添加表面活性劑無水乙醇以減弱水分子間的表面張力,從而阻止團聚現象。沉淀過程中,采用超聲波震蕩分散沉淀的顆粒,同時采用恒溫水浴控制反應過程中的溫度。將樣品置入110 ℃的鼓風式干燥箱中過夜干燥,然后放進馬弗爐里并以10 ℃/min進行升溫,在450 ℃下焙燒4 h,將制成的樣品分別用陶瓷坩堝粗研磨和瑪瑙坩堝細研磨后收集待用。
1.2 催化劑表征
在德國Bruker AXS公司D8-advance型X射線衍射儀上開展XRD分析,輻射源使用Cu K(=0.154 18 nm),工作電流為40 mA,電壓為40 kV,小角衍射的掃描范圍2=0.8°~8°,掃描步幅為0.002°,廣角衍射的掃描范圍為2=10°~80°,步長為0.02°;樣品的N2吸附/脫附曲線在Micromeritics Instrument公司的ASAP 2460型孔徑分析儀上進行測定,測定前把樣品在真空條件180 ℃下預先脫氣不少于6 h;程序升溫還原(H2-TPR)測試在Micromeritics Autochem II 1920型化學吸附儀上進行,用氬氣預處理,10 ℃/min升到300 ℃保持30 min再降到40 ℃。通氫氬混合氣基線穩定,開始10°每分鐘升到820 ℃并記錄信號。
1.3 催化劑活性測試
進行催化劑活性評價的主要指標為:碳煙的起燃溫度T、峰值溫度T以及NO向N2的轉化率(NO)。其中T是反應完成后失去的質量達到總質量5%時對應的溫度,T是最大失重速率對應的溫度,認定T和T越低,并且NO越高,則催化活性越高。本文采用離線方式分別研究CeO2對柴油機碳煙顆粒和NO氣體的降低效果,由于碳煙和NO均與柴油機尾氣中一致,因而可以同時降低柴油機的碳煙和NO排放。
試驗所用發動機是1臺四缸增壓中冷電子控制高壓共軌柴油機,它的主要技術參數如表1所示。顆粒樣品通過AVL公司的SPC472顆粒分析儀采集,按照ESC13工況標準循環及法規對應的權重分配收集顆粒物。采用瑞士METTLER公司的TGA/DSC1型熱重分析儀,內置高精度的微克電子天平及溫度傳感器。熱重試驗選擇質量分數為12%的氧氛圍,較為接近柴油排氣中氧含量,氣體流速為100 mL/min,以高純度N2作為保護氣,升溫速率為15 ℃/min,程序溫度區間為40~800 ℃,樣品重量3 mg。圖1為催化劑活性評價工藝示意圖。

表1 YZ4DB1-40型柴油機主要技術參數
將CeO2置于固定床反應器中,反應氣體用5%NO+10%O2+85%He模擬柴油機排放氣,同時進行程序升溫,由模擬尾氣中NO濃度([NO]inlet)與出口處N2濃度([N2])計算出各反應溫度下NO轉換率,并以此數據作為對催化劑活性而進行衡量的一個重要指標,具體計算公式如式(1)。
NO=2[N2]/100[NO]inlet×100% (1)
2.1 催化劑的性能表征
2.1.1 XRD分析結果
CeO2催化劑的XRD圖譜如圖2所示。圖2為分析純CeO2的特征衍射峰,其譜峰位置為2=28.5°、33.1°、47.5°、56.3°和59.0°。3組催化劑樣品均呈現出了立方螢石狀結構特征衍射峰,出峰位置與標準卡(JCPDS 34-0394)相同,分別對應CeO2納米材料立方螢石結構的(111)、(200)、(220)、(311)和(222)晶面,這說明3組CeO2晶體結構均無變化,依然為立方螢石狀結構。通過謝樂公式(Scherrer)[28-29]與CeO2(111)的衍射峰半峰寬來計算可得出圖中相應CeO2樣品的平均粒徑依次是7、12和20 nm,明顯小于國藥購買的商業級CeO2催化劑粒度(100 nm),標記為Comm-CeO2。
2.1.2 BET分析結果
表2是3組不同CeO2樣品的孔容積、比表面積與孔徑數據。樣品的比表面積采用BET(Brunauer- Emmett-Teller)法計算,孔容和孔徑由等溫線吸附分支采用BJH(Barrett-Joyner-Halenda)模型計算所得,其中孔容用相對壓力p/p0= 0.99處的吸附量計算得到。由表中數據可知,自制的CeO2相較于商業級CeO2具有較大的比表面積,由于本研究催化劑顆粒樣品僅3種,沒有形成明確的數值關系,僅表現出了一種趨勢。試驗用催化劑粒徑比較小,比表面積明顯較商用的大,比表面積越大表明單位質量CeO2的表面具有更多活性位,且反應物與催化劑具有更多的接觸機會,這對反應物分子的吸附與活化是有利的。

表2 CeO2樣品的表面積、孔容、孔徑
2.1.3 H2-TPR分析結果
圖3為4種CeO2的H2-TPR譜圖。由圖3可知,沉淀法制備的CeO2有3個較明顯的H2還原峰,20 nm的還原峰比較明顯,分別對應365、480、726 ℃,其中,365 ℃時的低溫還原峰是CeO2的表面吸附氧還原,480 ℃時的中溫還原峰為CeO2的表面晶格氧還原,726 ℃的高溫還原峰為CeO2的體相晶格氧還原,而Comm-CeO2只有比較微弱的表面晶格氧與體相晶格氧還原峰。CeO2的氧物種,尤其是表面晶格氧與其催化活性直接相關,表面氧物種還原能力越強,催化活性越高。從圖中還能看出H2-TPR的結果和BET的結果有較好的對應性。
2.2 活性測試
2.2.1 熱重分析
圖4是柴油機顆粒在排氣模擬氣氛中的熱重曲線(thermogravimetry,TG)和微商熱重曲線(derivative thermogravimetry,DTG)。由圖4可見,未添加CeO2顆粒的TG曲線中兩段較為顯著失重對應DTG曲線中兩個峰值。TG曲線在低溫段23% SOF組分失重,高溫段74%干碳煙氧化失重,氧化終了階段還剩余3%的硫酸鹽與金屬。
為了探究CeO2不同微觀結構參數對顆粒的催化氧化性能影響規律,將相同質量的3組CeO2與等量柴油機顆粒混合進行熱重試驗,每組顆粒失重量均以百分數計量,得到3組不同的TG與DTG曲線如圖4中虛線所示。由DTG曲線可以看出,顆粒在CeO2催化狀態下出現了3個峰值失重率,可以歸結為SOF中低沸點HC組分揮發、高沸點HC氧化及干碳煙氧化燃燒。顆粒添加CeO2與純顆粒DTG曲線相比,峰值溫度降低說明CeO2加入促進了SOF中部分組分氧化燃燒及干碳煙氧化燃燒。
對于干碳煙的催化氧化,隨著3組CeO2的加入,T和T都呈現出不同程度的降低。相應的DTG曲線向低溫段遷移,且添加20 nm CeO2的T和T最低,這與上述比表面積及H2-TPR分析結果一致。3組CeO2對碳煙顆粒催化氧化的效率依次為:20 nm>12 nm>7 nm,T依次降低了124、109、93 ℃,T依次降低了185、104、102 ℃。
碳煙通常是柴油分子在高溫缺氧環境下熱分解而形成的。由于CeO2具有優良的儲氧/釋氧性能,即能在含氧量低時及時釋放氧從而促進碳煙的進一步氧化。缸內燃燒生成的碳煙部分可以通過CeO2催化反應氧化成CO2,其燃燒化學方程見式(2)和(3)[28]。
4CeO2?2Ce2O3+O2(2)
C(soot)+O2→CO2(3)
2.2.2 NO轉化率
圖5為CeO2催化劑對NO的轉化率曲線。由圖可見,自制的3組CeO2催化劑對NO的轉化率明顯高于Comm-CeO2,NO轉化率隨著溫度升高均呈現出先增加后減小的趨勢,其中20 nm CeO2對NO氣體的轉化率在350 ℃時達到的最大值為70%。3組CeO2催化劑在400~520 ℃間的轉化率均大于68%,表明CeO2溫度窗口是較寬的。
Ce2O3在初始燃燒增強后能夠保持高催化活性并能夠被再次氧化成CeO2,以此來降低NOx排放。NO被降低并轉化成N2的具體化學方程如式(4)所示[30]。因此,添加CeO2催化劑可以在一定程度上抑制NOx排放,與此同時CeO2可以進行再生。
2Ce2O3+NO→4CeO2+N2(4)
以制備的3組不同微觀結構的納米CeO2催化劑為研究對象,通過一系列表征手段詳細研究了納米CeO2的微觀結構對其催化活性的影響,并以soot的起燃溫度、峰值溫度以及NO轉化率作為評價指標。研究結果表明:
1)本文采用的沉淀法制備的納米CeO2催化劑粒徑分別為7、12、20 nm,遠小于商業級CeO2,且比商業級CeO2具有較大的比表面積,并能很好改善碳煙顆粒氧化特性并能有效轉換NO;
2)制備的3組CeO2對soot顆粒催化氧化的效果依次為:20 nm >12 nm >7 nm,且這3組CeO2催化劑較未添加催化劑時起燃溫度依次降低了124、109、93 ℃,峰值溫度依次降低了185、104、102 ℃;
3)在制備的3組CeO2粒徑都比較小的情況下粒徑對催化活性的影響微乎其微,催化活性跟比表面積有很大關系,比表面積越大的催化劑催化活性越高;
4)3組CeO2具有對NO較高的轉化率,其中20 nm CeO2對NO氣體的轉化率在350 ℃時達到的最大值為70%;3組CeO2催化劑在400~520 ℃間的轉化率均大于68%,具有較寬的溫度窗口。
[1] Chatterjee S, Conway R, Viswanathan S, et al. NOxand PM control from heavy duty diesel engines using a combination of low pressure EGR and continuously regenerating diesel particulate filter[J]. Sae World Congress, 2003, 17(3): 73-86.
[2] Stanmore B R, Brilhac J F, Gilot P. The oxidation of soot: A review of experiments, mechanisms and models[J]. Carbon, 39(15): 2247-2268.
[3] Heywood, John B.Internal combustion engine fundamentals[M]. New York: McGraw-Hill, Inc, 1988.
[4] Mescia D, Caroca J C, Russo N, et al. Towards a single brick solution for the abatement of NOxand soot from diesel engine exhausts[J]. Catalysis Today, 2008, 137(2/3/4): 300-305.
[5] Issa M, Petit C, Brillard A, et al. Oxidation of carbon by CeO2: Effect of the contact between carbon and catalyst particles[J]. Fuel, 2008, 87(6): 740-750.
[6] Fino D, Specchia V. Open issues in oxidative catalysis for diesel particulate abatement[J]. Powder Technology, 2008, 180(1/2): 64-73.
[7] 楊曦,張昭良,王仲鵬,等. 柴油機燃料添加型催化劑研究進展[J]. 環境科學與技術,2010,33(7):68-70.
Yang Xi, Zhang Zhaoliang, Wang Zhongpeng, et al. Progress in fuel borne catalysts for the purification of diesel exhaust[J]. Environmental Science & Technology, 2010, 33(7): 68-70. (in Chinese with English abstract)
[8] 劉少康,孫平,劉軍恒,等. 鈰基燃油催化劑改善柴油機顆粒物捕集器再生效果[J]. 農業工程學報,2016,32(1):112-117.
Liu Shaokang, Sun Ping, Liu Junheng, et al. Ce-based fuel borne catalyst enhancing regenerative effect of diesel particulate filter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 112-117. (in Chinese with English abstract)
[9] Kaspar J, Fomasiero P, Graziani M. Use of CeO2-based oxides in the three-way catalysis[J]. Catalysis Today, 1999, 50(2): 285-298.
[10] Li G R, Qu D L, Wang Z L, et al. Ceria-terbia solid solution nanobelts with high catalytic activities for CO oxidation[J] Chemistry Common, 2009, 48(48): 7557-7559.
[11] Sugiura M, Ozawa M, Suda A, et al. Development of innovative three-way catalysts containing ceria-zirconia solid solutions with high oxygen storage/release capacity[J]. Bulletin of the Chemical Society of Japan, 2005, 78(5): 752-767.
[12] Shi Z M, Liu Y, Yang W Y, et al. Evaluation of cordierite-ceria composite ceramic with oxygen storage capacity[J]. Journal of the European Ceramic Society, 2002, 22(8): 1251-1256.
[13] Murota T, Hasegawa T, Aozasa S, et al. Production method of cerium oxide with high storage capacity of oxygen and its mechanism[J]. Journal of Alloys and Compounds, 1993, 193(1/2): 298-299.
[14] Aneggi E, Boaro M, Litenburg C, et al. Insights into the redox properties of ceria-based oxides and their implications in catalysis[J]. Journal of Alloys and Compounds, 2006, 37(18): 1096-1102.
[15] Dutta G, Waghmare U V, Baidya T, et al. Origin of enhanced reducibility/oxygen storage capacity of Ce1-xTixO2compared to CeO2or TiO2[J]. American Chemical Society, 2006, 18(143): 3249-3256.
[16] Koranne M, Egami T, Tyagi S, et al. Lattice defects and oxygen storage capacity of nanocrystalline ceria and ceria-zirconia[J]. Journal of Physical Chemistry B, 2000, 104(47): 11110-11116.
[17] Mai H X, Sun L D, Zhang Y W, et al. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods and nanocubes[J]. Journal of Physical Chemistry B, 2005, 109(51): 24380-24385.
[18] 鄔齊敏,孫平,梅德清,等. 納米燃油添加劑CeO2提高柴油燃燒效率減少排放[J]. 農業工程學報,2013,29(9):64-69.
Wu Qimin, Sun Ping, Mei Deqing, et al. Nano-fuel additive CeO2on promoting efficient combustion and reducing emissions of diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(9): 64-69. (in Chinese with English abstract)
[19] 坐青松,鄂加強,龔金科,等. 基于鈰-錳基催化劑的微粒捕集器微粒的燃燒特性[J]. 中南大學學報:自然科學版,2013,44(8):3527-3532.
Zuo Qingsong, E Jiaqiang, Gong Jinke, et al. Character- istics of particle combustion based on MnOx-CeO2cataly sts for diesel particulate filter[J]. Journal of Central South University: Science and Technology, 2013, 44(8): 3527-3532. (in Chinese with English abstract)
[20] Chen Z H, Zhang W, Chen G S, et al. Influence of exhaust temperature and catalytic substrate properties on diesel exhaust[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 30(9): 42-49.
[21] 王海豐. 環境催化中稀土及過渡金屬催化材料作用機制的第一性原理研究[D].上海:華東理工大學,2011.
Wang Haifeng. The First Principles Study on the Mechanism of Rare Earth and Transition Metal Catalytic Materials in Environmental Catalysis[D]. Shanghai: East China University of Science and Technology, 2011. (in Chinese with English abstract)
[22] 龔金科,龍罡,蔡皓,等. 基于鈰基添加劑的顆粒捕集器催化再生研究[J]. 內燃機學報,2011(6):515-519.
Gong Jinke, Long Gang, Cai Hao, et al. Study on diesel particulate filter catalytic regenerating with ceria-based additive[J]. Transactions of CSISE, 2011(6): 515-519. (in Chinese with English abstract)
[23] Trovarelli A. Catakytic properties of ceria and CeO2-containing
materials[J]. Catalysis Reviews, 1996, 38(4): 439-520.
[24] Ulrich A, Wichser A. Analysis of additive metals in fuel and emission aerosols of diesel vehicles with and without particle traps[J]. Anal & Bioanal Chem, 2003, 377(1): 71-81.
[25] Teraoka Y, Nakano K, Kagawa S, et al. Simultaneous removal of nitrogen oxides and diesel soot particulates catalyzed by perovskite-type oxides[J]. Applied Catalysis B: Environmental, 1995, 5(3): 181-185.
[26] Shangguan W F, Teraoka Y, Kagawa S. Simultaneous catalytic removal of NOxand diesel soot particulates over ternary AB2O4spinel-type oxides[J]. Appl. Catal. B Environ, 1996, 8(2): 217-227.
[27] Daturi M, Bion N, Saussey J, et al. Evidence of a lacunar mechanism for deNOx activity in ceria-based catalysts[J]. Physical Chemistry Chemical Physics, 2001, 3(3): 252-255.
[28] Liao S Y, Yao R, Chen X Y, et al. Structure refinement and up-conversion of Ho3+/Er3+Co-doped 12CaO·7Al2O3[J]. Materials &Design,2016, 108(5): 93-105.
[29] Zyoud A, Campet G, Park D H, et al. Enhanced PEC characteristics for CdSe polycrystalline film electrodes prepared by combined electrochemical/chemical bath depositions[J]. J Electroanal Chem, 2016, 774(1): 7-13.
[30] Bozek F, Huzlik J, Mares J, et al. Emissions of selected pollutants while appling of specific additive enviroxtm TM[J]. Waeas Transactions on Environment & Developme, 2011, 7(8): 233-243.
Reducing soot and NO emission from diesel engine exhaust catalyzed by nano-CeO2
Huang He, Sun Ping, Liu Junheng※, Ye Song
(,212013,)
Nitrogen oxide (NOx) and particulate matter (PM) are the main emissions for diesel engines. Because of their contradictory relationship of generation mechanisms, only using the internal purification technology is very difficult to meet the increasingly stringent diesel emissions regulations. Development and application of after-treatment technology with low cost, high efficiency and high adaptability will be more promising, which should be utilized to control both NOxand PM emissions. Rare-earth-based catalysts have rich electronic structure, and show the unique physical and chemical properties. In existing rare earth oxides, cerium oxide has been paid much attention in the field of catalysis because of its low price, unique crystal structure and reversible transformation of trivalent ion (Ce3+) and tetravalent ion(Ce4+). In the recent years, the application of cerium dioxide (CeO2)in after-treatment technology for diesel engine is a hot research topic. In this study, 3 groups of nano-CeO2were prepared using the coprecipitation method in order to reduce the PM and NOxemissions from diesel engine through the after-treatment technology. The samples were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and hydrogen temperature programmed reduction (H2-TPR). What was more, the activity of catalysts was evaluated by ignition temperature and peak temperature of soot combustion as well as conversion ratio from nitric oxide (NO) to nitrogen (N2). The experimental results showed that CeO2crystal structure had not been changed, and continued to be the cubic fluorite structure. The average particle diameters of the prepared CeO2were 7, 12 and 20 nm, respectively, which were much smaller than that of commercial CeO2. Compared with commercial CeO2, the prepared CeO2had larger specific surface area, which indicated that there were more active sites on the surface of CeO2for the unit mass. Furthermore, there were more opportunities for the catalyst to be exposed to the reactants, which was beneficial for adsorption and activation of the reactant molecules. The prepared CeO2had 3 obvious H2reduction peaks, corresponding to the surface absorbed oxygen, surface lattice oxygen and bulk lattice oxygen, respectively. Oxygen species, especially the surface lattice oxygen, had direct relation with catalytic activity. The reduction property of surface oxygen species was stronger, and the catalytic activity was higher. The results of H2-TPR had correspondence with the results of BET. For the efficiency of catalytic oxidation, the order of nano-CeO2particle size from high to low was 20, 12 and 7 nm, successively. The ignition temperatures of soot combustion were reduced by 124, 109 and 93 ℃, and the peak temperatures were reduced by 185, 104 and 102 ℃ respectively with the 3 groups of CeO2catalysts. With the increase of temperature, the conversion ratio of NO firstly increased and then decreased. The conversion ratio of NO with 20 nm CeO2reached the highest value of 70% at 350 ℃. The conversion ratio of the 3 groups of CeO2catalysts was higher than 68% at 400-520 ℃, which indicated that CeO2has a wide temperature window. The experimental results can provide a reference for optimum design and application of CeO2catalyst in the field of diesel exhaust after-treatment system.
diesel engine; catalysts; emission control; PM; NOx
10.11975/j.issn.1002-6819.2017.02.008
TK421+.5
A
1002-6819(2017)-02-0056-05
2016-05-19
2016-11-21
江蘇省高校自然科學研究重大項目合同(14KJA470001);內燃機燃燒學國家重點實驗室開放基金資助項目(K2016-05);江蘇省普通高校研究生科研創新計劃項目(KYLX_1038);江蘇省自然科學基金(BK20160538)。
黃河,博士生,主要從事內燃機代用燃料及排放控制。鎮江 江蘇大學汽車與交通工程學院,212013。Email:394807515@qq.com。
劉軍恒,博士,講師,主要從事發動機排放控制。鎮江 江蘇大學汽車與交通工程學院,212013。Email:liujunheng365@163.com。
黃 河,孫 平,劉軍恒,葉 松. 納米CeO2催化劑對柴油機碳煙顆粒和NO降低效果[J]. 農業工程學報,2017,33(2):56-60. doi:10.11975/j.issn.1002-6819.2017.02.008 http://www.tcsae.org
Huang He, Sun Ping, Liu Junheng, Ye Song. Reducing soot and NO emission from diesel engine exhaust catalyzed by nano-CeO2[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 56-60. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.02.008 http://www.tcsae.org