999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一類上三角矩陣的計(jì)算研究

2017-01-18 08:22:27何超林于媛朱桂靜
關(guān)鍵詞:性質(zhì)數(shù)學(xué)

何超林,于媛,朱桂靜

(華南師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院,廣東廣州510631)

一類上三角矩陣的計(jì)算研究

何超林,于媛,朱桂靜

(華南師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院,廣東廣州510631)

針對(duì)一類特殊的上三角矩陣,主要對(duì)其兩種特殊形式下的矩陣與分塊矩陣進(jìn)行了分析及其應(yīng)用研究,得到了矩陣Tn的幾個(gè)性質(zhì)和分塊循環(huán)矩陣Bm,k行列式的一種低階計(jì)算公式及其相關(guān)的若干性質(zhì).

三角矩陣;分塊矩陣;行列式;極限

上三角矩陣是矩陣論里面非常重要的一類矩陣,具有良好的性質(zhì),比如若爾當(dāng)塊或史密斯標(biāo)準(zhǔn)型矩陣.作為計(jì)算算子,更是有其獨(dú)特的作用.文獻(xiàn)[1-2]對(duì)整數(shù)環(huán)上的單位上三角矩陣群及其子群結(jié)構(gòu)進(jìn)行了研究.文獻(xiàn)[3-5]給出了范德蒙行列式的多種推廣及其行列式計(jì)算.文獻(xiàn)[6-8]對(duì)循環(huán)矩陣進(jìn)行了推廣和對(duì)其正交性、求逆、特征值與特征向量等問(wèn)題進(jìn)行了研究.本文對(duì)文獻(xiàn)[1-2]的單位上三角矩陣群的另外一種特殊形式下的上三角矩陣群的矩陣進(jìn)行了兩種特殊形式下的分析探究,并借助文獻(xiàn)[3-5]的范德蒙行列式的推廣計(jì)算著重對(duì)分塊循環(huán)矩陣的行列式計(jì)算及其矩陣序列的斂散性進(jìn)行了研究.

1 預(yù)備知識(shí)

特別地,當(dāng)a1=d(),d()為關(guān)于的首項(xiàng)系數(shù)為1的多項(xiàng)式,aj=0,j=2,3,…,n,則Tn為史密斯標(biāo)準(zhǔn)型的矩陣;當(dāng)a1=,a2=1,aj=0,j=3,4,…,n時(shí),J=Tn為n階若爾當(dāng)塊.對(duì)于,容易發(fā)現(xiàn)有.

定義2設(shè)B1,B2,…,Bm為k∈N+階方陣,稱矩陣為關(guān)于{Bi},i=1,2,…,m,m∈N+的分塊循環(huán)矩陣,簡(jiǎn)記為Bm,k.

定理1[9](凱萊-哈密頓定理)設(shè)A是n階矩陣,f()是A的特征多項(xiàng)式,則f(A)=O.

定理2[3]準(zhǔn)Vandermonde行列式計(jì)算,A(jj=1,2,3,…,n)為非O的可交換k∈N+階矩陣,E為k∈N+階單位方陣,則

2 主要定理

定理3設(shè)矩陣Tn,aj為任一實(shí)數(shù),j=1,2,…,n,則(Tn-a1I)n=O.特別的,a1=0,aj∈R時(shí),(Tn)n=O.

證明:由Tn的定義,易知Tn的特征多項(xiàng)式為:,所以由定理1可得:f(Tn)=(Tn-a1I)n=O.其中a1=0時(shí),f(Tn)=(Tn)n=O,證畢.

定理4設(shè)矩陣Tn,,則有?x,y∈R,有

由于j,t的任意性,所以?j,t∈N+,有

由定理4易得如下的結(jié)論:

特別地,(Tn(x))r=Tn(rx).

證明:由G易知:

所以G存在單位元.又?x∈R,Tn(x)∈G,?Tn(-x)∈G,使得Tn(x)·Tn(-x)=Tn(0),所以G存在逆元.另一方面,由定理4易知G滿足結(jié)合律與交換律,所以(G,·)構(gòu)成一個(gè)交換群,證畢.

則當(dāng)且僅當(dāng)x=0時(shí),矩陣序列{Tn(k)(x)}收斂且,I為n階單位矩陣.

證明:若x=0,則Tn(x)=I,則有,所以矩陣序列收斂.

此類特殊的三角矩陣除了本身的一些性質(zhì)外,在分塊矩陣的行列式計(jì)算以及分塊矩陣的矩陣分析中同樣起到比較好的作用.

定理7設(shè)分塊循環(huán)矩陣Bm,k(m,k∈N+),則

考慮(*)式的右邊的矩陣的第一列,有

同理可得(*)式右邊的矩陣的第j列有

故(*)可化為:

推論7.1設(shè)分塊循環(huán)矩陣Bm,k,若, j=1,2,…,m則m=1,.

定理8設(shè)分塊循環(huán)矩陣Bm,k,矩陣V為關(guān)于矩陣Aj(j=1,2,…,m)的準(zhǔn)范德蒙矩陣,若.則矩陣序列{(BV)t}在m≥2且m≠3時(shí)發(fā)散;在m=3時(shí),序列收斂,且,其中O為零矩陣,.

當(dāng)j=m-1時(shí),有

由推論7.1知j≠m-1時(shí),f(Aj)=(0),故lj=(O,O,…,O)T,j=1,2,…,m-2,m,則有,其中

當(dāng)m≠3,m≥2時(shí),

這類特殊的矩陣還有很多性質(zhì)值得我們?nèi)ヌ骄浚貏e是在分塊矩陣的行列式的計(jì)算當(dāng)中的應(yīng)用.

[1]劉合國(guó),吳佐慧,周芳.單位上三角矩陣群的注記[J].數(shù)學(xué)學(xué)報(bào),2011,54(2):211-218.

[2]劉合國(guó),吳佐慧.單位上三角矩陣群的注記(II)[J].數(shù)學(xué)學(xué)報(bào),2012,55(4):673-688.

[3]齊登記.準(zhǔn)Vandermonde行列式[J].合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2006,29(2):254-256.

[4]尤蘭,王振.Vandermonde行列式的一類推廣[J].科教文匯,2014(292):49-50.

[5]陳祥恩,程輝,劉仲奎,等.第三類廣義Vandermonde行列式的計(jì)算[J].大學(xué)數(shù)學(xué),2012,28(1):162-164.

[6]何承源.循環(huán)矩陣的一些性質(zhì)[J].數(shù)學(xué)實(shí)踐與認(rèn)識(shí),2001,31(2):211-217.

[7]李天增,王瑜.循環(huán)矩陣的形式及求逆方法[J].四川理工學(xué)院學(xué)報(bào)(自然科學(xué)版),2009,22(4):47-50.

[8]姜友誼,劉興洪.二步循環(huán)矩陣的性質(zhì)[J].西南民族大學(xué)學(xué)報(bào)(自然科學(xué)版),2005,32:60-62.

[9]方保镕,周繼東,李醫(yī)民.矩陣論[M].北京:清華大學(xué)出版社,2004.

Computation on First-Class Upper Triangular Matrix

HE Chaolin,YU Yuan,ZHU Guijing
(School of Mathematical Sciences,South China Normal University,Guangzhou 510631,Guangdong,China)

Aiming at one particular upper triangular matrix,two particular forms of matrices and block matrices are mainly analyzed and researched.Several characters of matrix Tnand one low-order calculation formula and several related characters on the determinant of block circulant matrix Bm,kare obtained.

triangular matrix;block matrix;determinant;extremity

O151.21

A

1001-4217(2016)04-0024-07

2015-08-06

何超林(1990—),男,廣東廣州,碩士研究生.研究方向?yàn)槌醯葦?shù)學(xué)、數(shù)學(xué)教學(xué).E-mail:609059099@qq.com

猜你喜歡
性質(zhì)數(shù)學(xué)
一類非線性隨機(jī)微分方程的統(tǒng)計(jì)性質(zhì)
隨機(jī)變量的分布列性質(zhì)的應(yīng)用
一類多重循環(huán)群的剩余有限性質(zhì)
完全平方數(shù)的性質(zhì)及其應(yīng)用
九點(diǎn)圓的性質(zhì)和應(yīng)用
我們愛數(shù)學(xué)
厲害了,我的性質(zhì)
我為什么怕數(shù)學(xué)
新民周刊(2016年15期)2016-04-19 18:12:04
數(shù)學(xué)到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
數(shù)學(xué)也瘋狂
主站蜘蛛池模板: 亚洲国产黄色| 五月六月伊人狠狠丁香网| 亚洲最新地址| 亚洲国产成人精品一二区| 国产成人免费| 少妇人妻无码首页| 免费又爽又刺激高潮网址 | 91热爆在线| 69综合网| 免费国产福利| 天堂在线www网亚洲| 91欧美在线| 成人免费网站在线观看| 国产精品亚欧美一区二区 | 米奇精品一区二区三区| 欧美一区二区人人喊爽| 最新痴汉在线无码AV| 色综合久久88色综合天天提莫| 99热这里只有精品免费国产| 久久天天躁狠狠躁夜夜2020一| 国产新AV天堂| 91精品免费久久久| 国产在线视频二区| 久久国产精品波多野结衣| 黑人巨大精品欧美一区二区区| 色综合五月| 成人va亚洲va欧美天堂| 国产91成人| 国产高清在线观看| 尤物精品视频一区二区三区| 亚洲男人的天堂在线观看| 人妻免费无码不卡视频| 亚洲—日韩aV在线| 91精品伊人久久大香线蕉| 日韩第一页在线| 亚洲性日韩精品一区二区| 日本手机在线视频| 日韩av手机在线| 制服丝袜国产精品| 99在线观看精品视频| 精品国产黑色丝袜高跟鞋| 日本爱爱精品一区二区| 蜜臀AVWWW国产天堂| 亚洲色欲色欲www在线观看| 国产精品制服| 日韩麻豆小视频| 国产精品无码AⅤ在线观看播放| 国产毛片片精品天天看视频| 亚洲av片在线免费观看| 99热在线只有精品| 国产亚洲欧美在线视频| 亚洲VA中文字幕| 在线毛片网站| 99视频精品全国免费品| 日韩在线欧美在线| 色综合久久88色综合天天提莫| 午夜不卡视频| 精品偷拍一区二区| 日韩专区欧美| 福利在线免费视频| 国产剧情一区二区| 97在线视频免费观看| 婷婷色一二三区波多野衣| 亚洲欧美成人综合| 久久婷婷六月| 欧美精品另类| 91免费国产在线观看尤物| 激情综合五月网| www成人国产在线观看网站| 手机精品福利在线观看| 色综合色国产热无码一| 亚洲日韩图片专区第1页| 9966国产精品视频| 欧美国产日韩另类| 国产一区二区免费播放| 国产丝袜第一页| 爆操波多野结衣| 91偷拍一区| 国产夜色视频| 精品自窥自偷在线看| 亚洲国产91人成在线| 在线欧美国产|