999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

配施硫基肥對夏玉米鎘鉛累積的阻控效應

2017-01-17 15:15:00孫洪欣薛培英趙全利馮宇佳耿麗平陳苗苗劉文菊
農業(yè)工程學報 2017年1期
關鍵詞:腐殖酸污染

孫洪欣,薛培英,趙全利,馮宇佳,耿麗平,陳苗苗,劉文菊※

(1. 河北農業(yè)大學資源與環(huán)境科學學院/河北省農田生態(tài)環(huán)境重點實驗室,保定 071000;2. 河北農業(yè)大學教學試驗場,保定071000;3. 河北農業(yè)大學科學技術研究院,保定 071001)

配施硫基肥對夏玉米鎘鉛累積的阻控效應

孫洪欣1,薛培英1,趙全利2,馮宇佳1,耿麗平1,陳苗苗3,劉文菊1※

(1. 河北農業(yè)大學資源與環(huán)境科學學院/河北省農田生態(tài)環(huán)境重點實驗室,保定 071000;2. 河北農業(yè)大學教學試驗場,保定071000;3. 河北農業(yè)大學科學技術研究院,保定 071001)

該文以府河流域污灌區(qū)農田為研究對象,通過田間小區(qū)試驗研究了5種施肥措施對土壤重金屬鎘(Cd)、鉛(Pb)有效性以及夏玉米(Zea mays L.)對Cd、Pb富集和轉運能力的影響。結果表明:與農民常規(guī)施肥(CK)相比,尿素、磷酸二銨和氯化鉀配施(N-P-K)以及腐殖酸復合肥、尿素和磷酸二銨配施(HA-N-P)的表層土壤Cd、Pb有效性以及夏玉米對Cd、Pb的富集和遷移能力差異均不顯著(P>0.05)。然而,腐殖酸復合肥、硫酸銨和磷酸二銨配施(HA-S-P)以及硫酸銨、磷酸二銨和硫酸鉀配施(S-P-K)2種施肥措施的表層土壤有效Cd含量分別比CK降低了10.60%和6.36%,表層土壤有效Pb含量分別比CK降低了11.49%和6.00%。此外,HA-S-P處理和S-P-K處理夏玉米Pb轉運系數(shù)分別比CK降低了50.33%和77.10%,且夏玉米籽粒Pb含量分別比CK降低了59.75%和80.43%(P<0.05),但各處理間夏玉米對Cd的轉運和富集能力差異并不顯著,這說明施用硫基肥可有效抑制夏玉米對Pb的富集和轉運,但并未影響其對Cd的富集和轉運。綜上所述,該污灌區(qū)輕度Cd、Pb復合污染農田土壤種植夏玉米建議硫酸銨、磷酸二銨和硫酸鉀配施,或者腐殖酸復合肥、硫酸銨和磷酸二銨配施。

重金屬;肥料;污染;污灌農田;夏玉米;鎘;鉛

0 引 言

由于農用水匱乏,1957年中國農業(yè)開始規(guī)模化引污灌溉,2004年全國污灌面積達3.61×106hm2,占灌溉總面積的7.33%,主要分布在黃淮海及遼河流域[1-3]。其中,64.80%污灌農田土壤遭受重金屬污染,46.70%為輕度污染,9.70%為中度污染,8.40%為嚴重污染[4-5]。研究表明:長期污水灌溉可造成土壤中重金屬富集,導致農田土壤重金屬污染[6-7]。保定周邊地區(qū)污灌始于1960年初,是河北省發(fā)展最早的污灌區(qū),主要分布在城市近郊等周邊地區(qū)及排污河沿岸[8]。由于長期污灌,農田土壤中鎘(Cd)、鉛(Pb)已存在明顯積累現(xiàn)象[9],累積在農田土壤中的重金屬等污染物質會降低農作物產量和品質,并通過食物鏈最終進入人體,危害人類健康[10-12]。因此,修復污灌導致的重金屬污染農田土壤成為保障中國糧食安全的重要舉措之一。

對于重金屬高污染農田,常采用造價相對較高且工藝較復雜的物理修復(如工程措施和固化技術等)、化學修復(如電動修復和土壤 E DTA淋洗等)[13-14]以及應用重金屬超富集植物的生物修復技術等[15-16]。對于重金屬輕度污染農田,農業(yè)措施因其經濟、環(huán)保、易推廣等特點日益受到人們關注,施肥作為農業(yè)生產中的常規(guī)措施,一方面能夠改善土壤性質和土壤養(yǎng)分狀況,另一方面可通過引入外源離子起到鈍化土壤重金屬作用。一些研究表明,硫是植物生長的必需營養(yǎng)元素,硫肥的施用不僅可以提高作物產量和品質,還可以通過影響土壤pH值或與重金屬離子發(fā)生沉淀、絡合而影響重金屬離子的生物有效性[17-18],或者可通過促進植物體內谷胱甘肽和植物螯合肽等巰基物質的合成來提高植物對重金屬的抗性,影響植物對重金屬的富集能力[19-21]。然而,隨著作物產量提高,復種指數(shù)增加,農作物帶走的硫素大幅增加,而有機肥和含硫化肥的施用量卻不斷下降,甚至一些地區(qū)出現(xiàn)作物缺硫現(xiàn)象,可見適當施用硫肥是必要的[22]。此外,腐殖酸類有機物質為兩性膠體,一方面可以提高土壤肥力,另一方面因其具有較高的陽離子代換量以及很好的絡合性能,也可以通過與重金屬離子發(fā)生沉淀、絡合等反應降低土壤重金屬有效性,使鉛、鎘、銅、鋅、鉈等重金屬由可交換態(tài)向Fe/Mn氧化物結合態(tài)和有機質結合態(tài)轉化[23-26]。以往研究大多集中于天然或人工合成鈍化劑在重金屬污染土壤中的應用研究[27-31],存在造價高,不易推廣,容易造成二次污染等問題,并且大多局限于室內模擬試驗,與實際大田環(huán)境相差甚遠。因此,該研究以河北保定典型污灌區(qū)—府河污灌區(qū)Cd、Pb復合污染農田土壤為研究對象,在不增加農民種植成本前提下,于夏玉米季通過田間小區(qū)試驗研究5種施肥措施(每種施肥處理保證施入同等量的氮、磷、鉀,在此基礎上分別選用硫基肥或腐殖酸復合肥)對土壤中Cd、Pb有效性以及夏玉米對Cd、Pb富集和轉運能力的影響,以期篩選出能有效降低重金屬向食物鏈傳遞的最佳施肥措施,為污灌區(qū)夏玉米的安全生產提供技術指導。

1 材料與方法

1.1 試驗區(qū)概況

試驗地位于河北省保定市府河污灌區(qū)(38°49'31.5"N,115°39'20.4"E),位于保定清苑縣境內。全年試驗區(qū)平均氣溫12.5 ℃,平均濕度67%,平均風速1.8 m/s,平均降水量488.2 mm,年日照時數(shù)2 629.5 h,年無霜期209 d,其種植制度為冬小麥—夏玉米輪作,一年兩熟。保定府河污灌區(qū)是保定主要的污灌區(qū)之一,自1949年開始污灌。府河是污染最嚴重的大清河南分支之一,流經保定市西北郊區(qū)及清苑縣,主要接納工業(yè)廢水和生活污水,其沿岸地區(qū)農灌廢水量為9.18×106m3/a,灌溉面積約0.79×104hm2。本研究小組前期調查研究表明,試驗區(qū)因常年污灌已造成農田土壤、作物籽粒存在不同程度的Cd、Pb超標現(xiàn)象。

1.2 供試材料

1.2.1 供試土壤

供試土壤為壤質潮褐土,其基本理化性質為pH值8.01,有機質 2 5.53 g/kg;速效磷 2 8.18 mg/kg;速效鉀0.35 g/kg;全量硫250 mg/kg。供試土壤(0~20 cm)重金屬含量見表1。

表1 供試土壤(0~20cm)重金屬質量分數(shù)Table 1 Content of heavy metals in soil(0-20 cm) mg·kg-1

由表1可知,與河北省土壤背景值相比,長期污灌造成供試表層土壤中重金屬(Cu、Zn、Pb、Cr、As、Hg、Cd)已經存在不同程度富集現(xiàn)象,富集程度表現(xiàn)為:Cd>Pb>Cu>Zn>Hg>As>Cr。其中Cd污染程度最高,約為河北省土壤背景值的10倍,超過土壤環(huán)境質量標準[32]安全限值約1.67倍;其次,土壤中富集程度較高的重金屬為Pb,達到安全限值的69.9%,為河北省土壤背景值的2.6倍,因此主要針對Cd、Pb兩種重金屬開展夏玉米季污灌區(qū)農田的適宜施肥方式篩選研究。

1.2.2 供試肥料

尿素(含N量為46.4%)、硫酸鉀(含K2O量為51%)、氯化鉀(含K2O量為54%)、磷酸二銨(N-P2O5-K2O:18-64-0)、硫酸銨(含N量為20.5%)、腐殖酸復合肥(N-P2O5-K2O:16-8-16,其中腐殖酸質量分數(shù)為8%,有機質質量分數(shù)為20%),玉米專用復合肥(N-P2O5-K2O:24-11-10)。供試肥料中Cd、Pb含量如表2所示,均遠低于中國無機—有機復混肥料標準(GB18877-2002,Cd≤0.001%;Pb≤0.015%;即Cd≤10 mg/kg;Pb≤150 mg/kg)。

表2 供試肥料重金屬鉛和鎘質量分數(shù)Table 2 Content of Pb and Cd in fertilizers mg·kg-1

1.2.3 供試作物

鄭單 9 58,該地區(qū)廣泛種植的高產穩(wěn)產夏玉米(Zea mays L.)品種。

1.3 試驗設計

2013年6月收獲小麥后開始進行夏玉米季田間試驗,篩選適宜污灌區(qū)農田夏玉米種植的施肥措施。共設5個施肥處理(表3),其中對照(CK)為當?shù)剞r民常規(guī)施肥方式(玉米專用復合肥與磷酸二銨配施),各施肥處理保證施入的 N 、P2O5和 K2O量一致,分別為 2 25、83和90 kg/hm2,氮素在夏玉米大喇叭口時期追施,磷、鉀全部基施。每個處理4個重復,共20個小區(qū),所有小區(qū)隨機排列,小區(qū)面積為160 m2。播種時帶小麥茬翻耕地,以30 cm×60 cm株行距進行播種,使用府河水以大水漫灌形式進行灌溉,于種植期灌溉1次,灌溉量為1 200 m3/hm2,灌溉水中各重金屬含量見表4,均符合灌溉水環(huán)境質量標準[32]。其他田間管理以當?shù)剞r民管理習慣為準。

表3 施肥處理Table 3 Fertilization treatments

表4 府河灌溉水的重金屬質量濃度Table 4 Concentrations of heavy metasl in irrigation water from Fu Rivermg·L-1

2013年9月收獲夏玉米,測定各處理產量,同時采用平均樣品混合法采集各處理表層土樣(0~20 cm)、夏玉米秸稈及籽粒樣品,測定其Cd、Pb含量。并根據(jù)第1季施肥措施篩選結果,選取添加硫基肥的S-P-K和HA-S-P處理于2014年6—9月對篩選出的施肥模式進行第2季驗證試驗,試驗方法與第1季相同。

1.4 樣品采集與分析

1.4.1 土壤樣品的采集與測定

夏玉米收獲后的土壤樣品中土壤pH值、速效磷、速效鉀、全量硫及有機質的樣品處理與測定均按《土壤農化分析》進行[33],土壤重金屬全量及Cd、Pb有效態(tài)含量測定分別采用四酸消解法消解[34]和DTPA浸提法浸提[35],其中Hg、As采用原子熒光(AFS2202E;北京海光儀器有限公司)進行測定,Cd、Pb、Cu、Zn、Ni、Cr采用ICP-MS(Agilent 7500a,安捷倫科技公司)進行測定,同時進行相關精密度控制及質量監(jiān)控[36]。

1.4.2 植物樣品采集與測定

夏玉米收獲時測定產量,每小區(qū)隨機采集3株植株(秸稈和籽粒),帶回實驗室洗凈,烘干粉碎后備用。采用硝酸-雙氧水微波消解法測定植物樣品中Cd、Pb含量,測定方法同1.4.1。

1.4.3 富集系數(shù)

籽粒富集系數(shù)=籽粒中重金屬含量/土壤中重金屬含量[36]。

秸稈富集系數(shù)=秸稈中重金屬含量/土壤中重金屬含量[36]。

富集系數(shù)越大說明對土壤中重金屬吸收積累的越多。

1.4.4 轉運系數(shù)

轉運系數(shù)=籽粒中重金屬含量/秸稈中重金屬含量[36]。轉運系數(shù)越小,說明植物吸收的重金屬從秸稈轉移至可食部位籽粒的含量就越少,從而進入食物鏈比例也就越少,進而保證農產品的安全。

1.5 數(shù)據(jù)統(tǒng)計分析

采用Microsoft Excel 2007和SPSS 19.0進行數(shù)據(jù)統(tǒng)計分析,使用Excel作圖。

2 結果與分析

2.1 5種施肥措施對夏玉米產量的影響

由圖1可見,CK、N-P-K、S-P-K、HA-N-P和HA-S-P處理夏玉米產量差異不顯著(P>0.05),其產量范圍為9 319~10 999 kg/hm2。

圖1 5種施肥措施對夏玉米產量的影響Fig.1 Summer maize yields under 5 fertilization treatments

2.2 5種施肥措施對夏玉米籽粒和秸稈中鎘、鉛含量的影響

不同施肥處理夏玉米籽粒中的Cd、Pb質量分數(shù)分別為0.004 6~0.005 3和0.027~0.14 mg/kg(表5),均未超過食品安全標準[37](Cd≤0.1 mg/kg,Pb≤0.2 mg/kg)。2013年HA-N-P和HA-S-P處理夏玉米籽粒中Cd質量分數(shù)最低,均為0.004 6 mg/kg,比CK降低11.54%(P>0.05);2014年試驗結果表明,S-P-K和HA-S-P處理夏玉米籽粒中Cd含量分別比CK降低4.92%和8.20%(P>0.05)。2013年S-P-K和HA-S-P處理中夏玉米籽粒Pb含量比CK顯著降低80.43%和59.75%(P<0.05);2014年試驗結果表明,S-P-K和HA-S-P處理夏玉米籽粒Pb質量分數(shù)分別為0.041和0.043 mg/kg,分別比CK降低32.69%和28.57%(P>0.05)。

2013年,不同施肥處理夏玉米秸稈中 C d、Pb質量分數(shù)分別為0.35~0.44和12.50~16.73 mg/kg(表5)。5種施肥處理夏玉米秸稈中Cd含量均未超過飼料衛(wèi)生標準[38](Cd≤0.5 mg/kg)和有機肥料限量標準[39](Cd≤3 mg/kg);Pb含量雖然符合有機肥料限量標準[39](Pb≤50 mg/kg),卻超過飼料衛(wèi)生標準[38]Pb≤8 mg/kg)56.25%~109.13%,超標率100%。其中,2013年,S-P-K和HA-S-P處理夏玉米秸稈中Cd含量分別比CK降低了14.29%和17.26%,Pb含量分別降低了12.07%和 1 2.59%,但各處理間差異并不顯著(P>0.05);2014年試驗結果表明,S-P-K處理的夏玉米秸稈中Cd、Pb質量分數(shù)分別為0.24和4.99 mg/kg,分別比CK顯著降低22.58%和32.57%(P<0.05)。

表5 5種施肥措施對夏玉米籽粒和秸稈中鎘和鉛含量的影響Table 5 Contents of Cd and Pb in grain and straw of summer maize under 5 fertilization treatments mg·kg-1

2.3 5種施肥措施對夏玉米籽粒和秸稈鎘、鉛富集能力的影響

富集系數(shù)表示植物各部分對重金屬的吸收和累積能力。不同施肥處理夏玉米籽粒和秸稈對Cd、Pb富集系數(shù)的影響見表6。其中,夏玉米秸稈對Cd、Pb的富集系數(shù)遠高于籽粒;此外,籽粒和秸稈對Cd的富集系數(shù)分別為Pb的6.89~35.00倍和5.13~6.17倍,這說明夏玉米籽粒和秸稈對Cd的富集能力遠高于Pb。從不同施肥處理對夏玉米籽粒和秸稈Cd、Pb富集系數(shù)的影響來看,僅有籽粒對Pb的富集系數(shù)在部分處理間存在顯著差異,其中,S-P-K和HA-S-P處理中籽粒對Pb的富集系數(shù)顯著低于CK(P<0.05),分別比CK低77.78%和44.44%。

表6 5種施肥措施對夏玉米籽粒和秸稈中鎘和鉛富集系數(shù)的影響Table 6 Bioaccumulation factors of Cd and Pb in grain and straw of summer maize under 5 fertilization treatments

2.4 5種施肥措施對夏玉米鎘、鉛轉運能力的影響

轉運系數(shù)表示植物秸稈向籽粒中轉運 Cd、Pb的能力。不同施肥處理夏玉米秸稈向籽粒轉運Cd、Pb的轉運系數(shù)見圖2。其中,夏玉米Cd轉運系數(shù)(0.012~0.015)為Pb轉運系數(shù)(0.002~0.011)的1.09~6.63倍,這說明Cd由秸稈向籽粒轉運的能力高于Pb的轉運能力。此外,不同施肥處理對夏玉米 Cd轉運系數(shù)影響均不顯著(P>0.05),但S-P-K和HA-S-P處理的Pb轉運系數(shù)分別比CK顯著降低了77.10%和50.33%(P<0.05)。

2.5 5種施肥措施對土壤鎘、鉛全量和有效態(tài)含量的影響

不同施肥處理對表層土壤中Cd、Pb全量影響均不顯著(表7)。5種施肥處理表層土壤Cd全量均超過土壤環(huán)境質量標準[32](Cd≤0.6 mg/kg),為安全限值的1.20~1.30倍;而5種施肥處理表層土壤Pb全量均未超過土壤環(huán)境質量標準[32]Pb≤80 mg/kg),為安全限值的66.13%~ 68.63%。其中,HA-S-P和S-P-K處理表層土壤有效態(tài)Cd、Pb含量均相對較低,Cd質量分數(shù)分別為0.253和0.265 mg/kg,比CK降低了10.60%和6.36%,Pb質量分數(shù)分別為8.55和9.08 mg/kg,比CK降低了11.49%和6.00%,但差異不顯著。

表7 5種施肥措施對土壤鎘和鉛全量和有效態(tài)含量的影響Table 7 Contents of total and available Cd and Pb in soil under 5 fertilization treatments mg·kg-1

3 討 論

本研究表明,5種施肥處理表層土壤Cd全量均超過土壤環(huán)境質量標準[32](表7),各施肥處理表層土壤Pb全量均未超標,但夏玉米籽粒中Cd質量分數(shù)(0.004 6~ 0.005 3 mg/kg)和Pb質量分數(shù)(0.027~0.14 mg/kg)均符合食品安全標準[37]。值得注意的是,夏玉米秸稈中Pb含量超過國家飼料衛(wèi)生標準56.25%~109.13%(表5),可見該地區(qū)種植的夏玉米秸稈不適宜用作青貯飼料。這也表明中國現(xiàn)行土壤環(huán)境質量標準(GB15618-1995)可能存在Cd閾值過低,Pb閾值偏高的問題,迫切需要根據(jù)土壤類型和作物特性等方面制定新的土壤環(huán)境質量標準[40]。另外,該研究中夏玉米富集系數(shù)及轉運系數(shù)的結果與他人研究結果一致[41-42],夏玉米對Cd的富集能力和轉運能力均高于Pb,是由于土壤中Cd的移動性要高于Pb,因此更容易被植物吸收,而且該研究中土壤有效態(tài)Cd含量占土壤全量Cd含量的33.97%~39.74%,高于土壤有效態(tài)Pb含量(占土壤全量Pb含量的15.80%~19.00%),這也同樣表明Pb在土壤中更容易被固定,從而使其有效性較低。

不同施肥處理相比,施用硫基肥的HA-S-P處理和S-P-K處理中土壤有效態(tài)Cd含量分別比CK降低約10.60%和 6 .36%,Pb含量分別比 C K降低約 1 1.49%和6.00%,說明外加硫基肥可以在一定程度上降低土壤重金屬Cd、Pb的有效性。薛培英等[43]和Chen等[44]研究均表明外源添加K2SO4可降低土壤中有效態(tài)Cd、Pb含量,從而抑制小麥(Triticum aestivum L.)對Cd、Pb的吸收。同時,對于低濃度Cd污染土壤(或EDTA-Cd含量為38.80 μg/kg[45]),外源添加S可有效降低土壤Cd有效性最終降低水稻對Cd的富集,這是由于硫酸根離子的施入一方面可與土壤中Cd、Pb形成難溶性復合物,另一方面可以增加土壤負電荷,促進土壤膠體對Cd、Pb陽離子的吸附進而降低Cd、Pb的生物有效性。另外,硫基肥如硫酸銨的施入會導致土壤pH值降低從而會增加土壤重金屬的有效性和遷移性[46-48],但本試驗中硫酸銨添加量很低,且受試土壤為石灰質土壤,連續(xù)2季試驗結果表明施加一定量硫基肥并未顯著降低土壤pH值(2013年pH值為7.55,2014年pH值為7.50),因此硫基肥(硫酸銨和硫酸鉀)的施入主要起到了鈍化土壤Cd、Pb的作用。適量外源S的添加,還可以提高植物體巰基物質的含量,進而促進植物體內重金屬和巰基物質的絡合,減緩重金屬對植物的毒害,抑制重金屬在地上部的積累[49-51]。該研究中對 P b而言,施用硫基肥顯著抑制了夏玉米對 P b的富集和轉運,2014年2種施肥處理(HA-S-P和S-P-K)的夏玉米籽粒中Pb含量同樣比CK分別降低28.57%和32.69%。可見,硫基肥的施入可通過降低土壤中Pb的生物有效性及抑制Pb向籽粒轉運來達到修復土壤-農作物Pb污染的目的。

以往研究表明,腐殖酸由于富含多種官能團,如羧基、酚羥基、羰基等可以與重金屬發(fā)生絡合(螯合)作用,從而降低重金屬的生物有效性[24-26],進而降低植物對重金屬的富集[52-53]。一般隨著腐殖酸投入比例的增加,土壤可溶態(tài)重金屬含量逐漸降低[54],王晶等[24]的研究中,腐殖酸材料(含腐殖酸43.7%)與草甸棕壤混合比例由0∶1逐漸增加到1∶0,土壤可溶態(tài)Cd分配比例由73%降至19%;高躍等[55]研究腐殖酸對Pb的賦存形態(tài)影響結果表明,添加10%~50%(腐殖酸與土壤質量比)的風化煤(含腐殖酸量為56%)可使土壤中交換態(tài)Pb含量降低57%~73.6%。但是該研究中單獨施用腐殖酸復合肥施肥處理的土壤中有效態(tài)Cd、Pb含量以及夏玉米籽粒中Cd、Pb含量與CK相比差異并不顯著,一方面可能是由于該試驗中施用的腐殖酸復合肥的腐殖酸含量與上述試驗相比相對較少(20%),另一方面可能是上述室內盆栽試驗中重金屬均為人為添加,土壤有效態(tài)Cd、Pb含量(土壤有效態(tài)Cd、Pb含量占土壤全量Cd、Pb含量的百分比分別約73%和37%)均遠高于該試驗中的田間土壤(土壤有效態(tài)Cd、Pb含量百分比約為36%和15.74%),這些都可能會導致本試驗中腐殖酸復合肥的施入對重金屬離子的鈍化效果不明顯。有研究發(fā)現(xiàn),腐殖質作為兩性膠體,其醌、酚等官能團能起到電子傳遞作用,從而促進重金屬離子由氧化態(tài)向還原態(tài)轉化并提高其生物有效性[56],這也可能是本研究中腐殖酸施用對土壤Cd、Pb有效性影響不顯著的原因之一,因此腐殖質對土壤重金屬有效性影響作用機制還有待進一步研究。但是腐殖酸復合肥的施入有利于改善土壤結構、提高土壤肥力,仍建議該地區(qū)農田土壤配合施用一定量的腐殖酸復合肥。

4 結 論

1)污灌區(qū)5種不同施肥措施夏玉米產量差異不顯著。對于污灌導致的輕度Cd、Pb污染農田而言,施用硫基肥一定程度上可降低土壤中Cd、Pb活性,有效降低夏玉米籽粒中Pb含量,但未顯著影響夏玉米籽粒對Cd的富集。

2)污灌區(qū)輕度Cd、Pb復合污染農田土壤種植夏玉米建議硫酸銨、磷酸二銨和硫酸鉀配施,或者腐殖酸復合肥、硫酸銨和磷酸二銨配施,既可以保證夏玉米的產量又能降低其可食部位Cd和Pb的累積。

[1] 宰松梅,王朝輝,龐鴻賓.污水灌溉的現(xiàn)狀與展望[J].土壤,2006,38(6):805-813. Zai Songmei,Wang Zhaohui,Pang Hongbin. Situation and prospect of sewage irrigation in agriculture[J]. Soils,2006,38(6):805-813.(in Chinese with English abstract)

[2] 方玉東.我國農田污水灌溉現(xiàn)狀、危害及防治對策研究[J].農業(yè)環(huán)境與發(fā)展,2011,28(5):1-6. Fang Yudong. Research on the present situation,harm and countermeasures of farmland sewage irrigation in China[J]. Agriculture Environment and Development,2011,28(5):1-6.(in Chinese with English abstract)

[3] 王貴玲,藺文靜.污水灌溉對土壤的污染及其整治[J].農業(yè)環(huán)境科學學報,2003,22(2):163-166. Wang Guiling,Lin Wenjing. Contamination of soil from sewage irrigation and its remediation[J]. Journal of Agriculture Environment Science,2003,22(2):163-166.(in Chinese with English abstract)

[4] 王凱榮,張玉燭.25年引灌含Cd污水對酸性農田土壤的污染及其危害評價[J].農業(yè)環(huán)境科學學報,2007,26(2):658-661. Wang Kairong,Zhang Yuzhu. Investigation and evaluation on Cd pollution of the acidic farmland soils irrigated with Cd-polluted wastewater for 25 years[J]. Journal of Agriculture Environment Science,2007,26(2):658-661.(in Chinese with English abstract)

[5] 辛術貞,李花粉,蘇德純.我國污灌污水中重金屬含量特征及年代變化規(guī)律[J].農業(yè)環(huán)境科學學報,2011,30(11):2271-2278. Xin Shuzhen,Li Huafen,Su Dechun. Concentration characteristics and historical changes of heavy metals in irrigation sewage in China[J]. Journal of Agriculture Environment Science,2011,30(11):2271-2278.(in Chinese with English abstract)

[6] 吳文勇,尹世洋,劉洪祿,等.污灌區(qū)土壤重金屬空間結構與分布特征[J].農業(yè)工程學報,2013,29(4):165-173. Wu Wenyong,Yin Shiyang,Liu Honglu,et al. Spatial structure and distribution characteristics of soil heavy metals in wastewater irrigation district[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2013,29(4):165-173.(in Chinese with English abstract)

[7] 李法虎,黃冠華,鄧健.污水灌溉對土壤浸提液元素濃度變化影響的田間實驗研究[J].農業(yè)工程學報,2005,21(11):124-129. Li Fahu,Huang Guanhua,Deng Jian. Effects of effluent irrigation on the variation of chemical element concentrations of soil extractions under field conditions[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2005,21(11):124-129.(in Chinese with English abstract)

[8] 孫洪欣,楊陽,王倩倩,等.府河流域污灌狀況及農戶對污灌與人體健康關系的認知調查分析[J].中國農學通報,2015,31(2):197-200. Sun Hongxin,Yang Yang,Wang Qianqian,et al. An investigation of the situation of sewage irrigation and localfarmers concern the relationship between sewage irrigation and human health along the Fu River[J]. Chinese Agricultural Science Bulletin,2015,31(2):197-200.(in Chinese with English abstract)

[9] 張麗紅,徐慧珍,于青春,等.河北清苑縣及周邊農田土壤及農作物中重金屬污染狀況與分析評價[J].農業(yè)環(huán)境科學報,2010,29(11):2139-2146. Zhang Lihong,Xu Huizhen,Yu Qingchun,et al. The investigation and evaluation of the heavy metal pollution in farmland soil and crop in the Qingyuan of Hebei,China[J]. Journal of Agriculture Environment Science,2010,29(11):2139-2146.(in Chinese with English abstract)

[10] Al-Lahham O,Asi N J,Fayyad M K. Impact of treated wastewater irrigation on quality attributes and contamination of tomato fruit[J]. Agricultural Water Management,2003,61(1):51-62.

[11] 朱宇恩,趙燁,李強,等.北京城郊污灌土壤-小麥(Triticum aestivum)體系重金屬潛在健康風險評價[J].農業(yè)環(huán)境科學學報,2011,30(2):263-270. Zhu Yuen,Zhao Ye,Li Qiang,et al. Potential influences of heavy metal in “soil-wheat(Triticum aestivum) ”system on human health:A case study of sewage irrigation area in Beijing,China[J]. Journal of Agro-Environment Science,2011,30(2):263-270.(in Chinese with English abstract)

[12] 鄭順安,唐杰偉,鄭宏艷,等.污灌區(qū)稻田汞污染特征及健康風險評價[J].中國環(huán)境科學,2015,35(9):2729-2736. Zheng Shun’an,Tang Jiewei,Zheng Hongyan,et al. Pollution characteristics and risk assessments of mercury in wastewater-irrigated paddy fields[J]. China Environmental Science,2015,35(9):2729-2736.(in Chinese with English abstract)

[13] 樊霆,葉文玲,陳海燕,等.農田土壤重金屬污染狀況及修復技術研究[J].生態(tài)環(huán)境學報,2013,22(10):1727-1736. Fan Ting,Ye Wenling,Chen Haiyan,et al. Review on contamination and remediation technology of heavy metal in agricultural soil[J]. Ecology and Environmental Sciences,2013,22(10):1727-1736.(in Chinese with English abstract)

[14] 郭曉方,衛(wèi)澤斌,吳啟堂.乙二胺四乙酸在重金屬污染土壤修復過程的降解及殘留[J].農業(yè)工程學報,2015,31(7):272-278. Guo Xiaofang,Wei Zebin,Wu Qitang. Degradation and residue of EDTA used for soil repair in heavy metalcontaminated soil[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015,31(7):272-278.(in Chinese with English abstract)

[15] 居述云,汪潔,宓彥彥,等.重金屬污染土壤的伴礦景天/小麥-茄子間作和輪作修復[J].生態(tài)學雜志,2015,34(8):2181-2186. Ju Shuyun,Wang Jie,Mi Yanyan,et al. Phytoremediation of heavy metal contaminated soils by intercropping with Sedum plumbizincicola and Triticum aestivum and rotation with Solanum melongena[J]. Chinese Journal of Ecology,2015,34(8):2181-2186.(in Chinese with English abstract)

[16] 聶亞平,王曉維,萬進榮,等.幾種重金屬(Pb、Zn、Cd、Cu)的超富集植物種類及增強植物修復措施研究進展[J].生態(tài)科學,2016,35(2):174-182. Nie Yaping,Wang Xiaowei,Wan Jinrong,et al. Research progress on heavy metal(Pb,Zn,Cd,Cu) hyper accumulating plants and strengthening measures of phytoremediation[J]. Ecologic Science,2016,35(2):174-182.(in Chinese with English abstract)

[17] 孫麗娟,段德超,彭程何,等.硫對土壤重金屬形態(tài)轉化及植物有效性的影響研究進展[J].應用生態(tài)學報,2014,25(7):2141-2148. Sun Lijuan,Duan Dechao,Peng Chenghe,et al. Influence of sulfur on the speciation transformation and phyto-availability of heavy metals in soil:A review[J]. Chinese Journal of Applied Ecology,2014,25(7):2141-2148.(in Chinese with English abstract)

[18] 鄭詩樟,劉志良.硫肥對土壤質量和生物有效性的研究進展[J].山東農業(yè)大學學報:自然科學版,2015,46(5):688-693. Zheng Shizhang,Liu Zhiliang. Advances on the availability of Sulphur fertilizers for soil quality and biology[J]. Journal of Shandong Agricultural University:Natural Science Edition,2015,46(5):688-693.(in Chinese with English abstract)

[19] 安志裝,王校常,嚴蔚東,等.鎘硫交互處理對水稻吸收累積鎘及其蛋白巰基含量的影響[J].土壤學報,2004,41(5):728-734. An Zhizhuang,Wang Xiaochang,Yan Weidong,et al. Effects of sulfate and cadmium interaction on cadmium accumulation and content of nonprotein thiols in rice seedling[J]. Acta Pedologica Sinica,2004,41(5):728-734.(in Chinese with English abstract)

[20] 翁南燕,周東美,汪鵬,等.銅鎘復合脅迫下硫素對小麥幼苗銅鎘吸收、亞細胞分布及毒性的影響[J].生態(tài)毒理學報,2011,6(1):87-93. Weng Nanyan,Zhou Dongmei,Wang Peng,et al. Influence of sulfur on subcellular distribution,uptake and toxicity of Cu and Cd to wheat seedlings[J]. Asian Journal of Ecotoxicology,2011,6(1):87-93.(in Chinese with English abstract)

[21] 孔祥瑞,曲東,周莉娜.硫營養(yǎng)對重金屬脅迫下玉米和小麥根系導水率的影響[J].西北植物學報,2007,27(11):2257-2262. Kong Xiangrui,Qu Dong,Zhou Lina. Effects of sulfur nutrition on root hydraulic conductivity of maize and wheat under heavy metals stress[J]. Acta Botanica Boreali-Occidentalia Sinica,2007,27(11):2257-2262.(in Chinese with English abstract)

[22] 李惠民,王保莉.玉米硫素營養(yǎng)狀況及應用研究進展[J].中國農業(yè)科技導報,2008,10(4):16-21. Li Huimin,Wang Baoli. Research progress on maize sulfur nutrition status and its utilization[J]. Journal of Agricultural Science and Technology,2008,10(4):16-21.(in Chinese with English abstract)

[23] 蔣煜峰,袁建梅,盧子揚,等.腐殖酸對污灌土壤中Cu、Cd、Pb、Zn形態(tài)影響的研究[J].西北師范大學學報:自然科學版,2005,4(6):42-46. Jiang Yufeng,Yuan Jianmei,Lu Ziyang,et al. The effect of humic acid on species of Cu,Cd,Pb,Zn in sewage farm[J]. Journal of Northwest Normal University:Natural Science,2005,4(6):42-46.(in Chinese with English abstract)

[24] 王晶,張旭東,李彬,等.腐植酸對土壤中Cd形態(tài)的影響及利用研究[J].土壤通報,2002,33(3):185-187. Wang Jing,Zhang Xudong,Li Bin,et al. The effect of humid acid on the cadmium transformation and the mechanism[J]. Chinese Journal of Soil Science,2002,33(3):185-187.(in Chinese with English abstract)

[25] 陳靜,黃占斌.腐殖酸在土壤修復中的作用[J].腐殖酸,2014(4):30-34,67. Chen Jing,Huang Zhanbin. Effect of humic acid on soil restoration[J]. Humic Acid,2014(4):30—34,67.

[26] 鄧紅梅,陳永亨.腐殖酸對污染土壤中鉈賦存形態(tài)的影響[J].環(huán)境化學,2010,29(1):35-38. Deng Hongmei,Chen Yongheng. Effect of humic acid on speciation transformation of thallium in polluted soils[J]. Environmental Chemistry,2010,29(1):35-38.(in Chinese with English abstract)

[27] 陳炳睿,徐超,呂高明.6種固化劑對土壤Pb、Cd、Cu、Zn的固化效果[J].農業(yè)環(huán)境科學學報,2012,31(7):1330-1336. Chen Bingrui,Xu Chao,Lü Gaoming. Effects of six kinds of curing agents on lead,cadmium,copper,zinc stabilization in the tested soil[J]. Journal of Agriculture Environment Science,2012,31(7):1330-1336.(in Chinese with English abstract)

[28] 趙國靜,李勝男,沈喆,等.不同修復劑對重金屬污染土壤修復的研究[J].環(huán)境科學與管理,2015,40(11):88-91. Zhao Guojing,Li Shengnan,Shen Zhe,et al. Study on remediation of heavy metal contaminated soil by different restorative agents[J]. Environmental Science and Management,2015,40(11):88-91.(in Chinese with English abstract)

[29] 曾卉,徐超,周航,等.幾種固化劑組配修復重金屬污染土壤[J].環(huán)境化學,2012,31(9):1368-1374. Zeng Hui,Xu Chao,Zhou Hang,et al. Effects of mixed curing agents on the remediation of soils with heavy metal pollution[J]. Environmental Chemistry,2012,31(9):1368-1374.(in Chinese with English abstract)

[30] 朱維,周航,吳玉俊,等.組配改良劑對稻田土壤中鎘鉛形態(tài)及糙米中鎘鉛累積的影響[J].環(huán)境科學學報,2015,35(11):3688-3694. Zhu Wei,Zhou Hang,Wu Yujun,et al. Effects of combined amendment on forms of cadmium/lead in paddy soil and accumulation of cadmium/lead in brown rice[J]. Acta Scientiae Circumstantiae,2015,35(11):3688-3694.(in Chinese with English abstract)

[31] 李劍睿,徐應明,林大松,等.農田重金屬污染原位鈍化修復研究進展[J].生態(tài)環(huán)境學報,2014,23(4):721-728. Li Jianrui,Xu Yingming,Lin Dasong,et al. In situ immobilization remediation of heavy metals in contaminated soils:A review[J]. Ecology and Environment Sciences,2014,23(4):721-728.(in Chinese with English abstract)

[32] 食用農產品產地環(huán)境質量評價標準:HJ/T 332-2006[S]. 北京:中國環(huán)境科學出版社,2007.

[33] 鮑士旦.土壤農化分析[M].第三版.北京:中國農業(yè)出版社,2007(3):14-114.

[34] 土壤質量 鉛、鎘的測定 石墨爐原子吸收分光光度法:GB/T17141-1997[S]. 1997.

[35] 土壤質量有效態(tài)鉛和鎘的測定 原子吸收法:GB/T23739-2009[S].北京:中國標準出版社,2009.

[36] 孫洪欣,薛培英,趙全利,等.鎘、鉛積累與轉運在冬小麥品種間的差異[J].麥類作物學報,2015,35(8):1161-1167. Sun Hongxin,Xue Peiying,Zhao Quanli,et al. Differences of cadmium and lead accumulation and translocation among winter wheat varieties[J]. Journal of Triticeae Crops,2015,35(8):1161-1167.(in Chinese with English abstract)

[37] 食品安全國家標準 食品中污染物限量:GB 2762-2012[S]. 北京:中國標準出版社,2012.

[38] 飼料衛(wèi)生標準:GB 13078-2001[S]. 北京:中國標準出版社,2001.

[39] 有機肥料:NY 525-2012 [S].北京:中國農業(yè)出版社,2012.

[40] 曾希柏,徐建明,黃巧云,等.中國農田重金屬問題的若干思考[J].土壤學報,2013,5(1):186-193. Zeng Xibai,Xu Jianming,Huang Qiaoyun,et al. Some deliberations on the issues of heavy metals in farmlands of China[J]. Acta Pedologica Sinica,2013,5(1):186-193.(in Chinese with English abstract)

[41] Cui Y S,Dong Y T,Li H F,et al. Effect of elemental sulphur on solubility of soil heavy metals and their uptake by maize[J]. Environment International,2004,30:325-328.

[42] 李媛,崔巖山,陳曉晨,等.幾種含硫肥料對油菜和三葉鬼針草吸收鉛鎘的影響[J].中國科學院研究生院學報,2009,26(5):621-626. Li Yuan,Cui Yanshan,Chen Xiaochen,et al. Effect of different types of sulphur fertilizer on oilseed rape and railway beggarticks herb uptake of lead and cadmium in lead-cadmium contaminated soil[J]. Journal of the Graduate School of the Chinese Academy of Sciences,2009,26(5):621-626.(in Chinese with English abstract)

[43] 薛培英,張桂銀,褚卓棟,等.鉀肥對小麥根際土壤鎘的吸收及其植物毒性的影響[J].生態(tài)環(huán)境,2007,16(5):1424-1428. Xue Peiying,Zhang Guiyin,Chu Zhuodong,et al. Effect of potassium fertilizers on the absorption of cadmium in rhizosphere soils and its phytotoxicity[J]. Ecology and Environment,2007,16(5):1424-1428.(in Chinese with English abstract)

[44] Chen S,Sun L N,Sun T H,et al. Interaction between cadmium,lead,and potassium fertilizer(K2SO4) in a soil–plant system[J]. Environmental Geochemistry and Health. 2007,29(5):435-446.

[45] Gao M X,Hu Z Y,Wang G D,et al. Effect of elemental sulfur supply on cadmium uptake into rice seedlings when cultivated in low and excess cadmium soils[J]. Communication in Soil Science and Plant Analysis,2010,41(8):990-1003

[46] Wang Y,Li Q,Hui W,et al. Effect of sulphur on soil Cu/Zn availability and microbial community composition[J]. Journal of Hazardous Materials,2008,159(2/3):385-389.

[47] Shi J Y,Lin H R,Yuan X F,et al. Enhancement of copper availability and microbial community changes in rice rhizospheres affected by sulfur[J]. Molecules,2011,16(2):1409-1417.

[48] 崔巖山,王慶仁.不同種類硫肥對油菜吸鋅的影響[J].中國農業(yè)生態(tài)學報,2008,16(1):113-116. Cui Yanshan,Wang Qingren. Effect of different types of sulphur fertilizer on oilseed rape zinc uptake[J]. Chinese Journal of Eco-Agriculture,2008,16(1):113-116.(in Chinese with English abstract)

[49] Fan J L,Hu Z Y,Noura Z D,et al. Excessive sulfur supply reduces cadmium accumulation in brown rice(Oryza sativa L.)[J]. Environmental Pollution,2010,158:409-415.

[50] 梁程,林匡飛,張雯,等.不同濃度硫處理下硒鎘交互脅迫對水稻幼苗的生理特性影響[J].農業(yè)環(huán)境科學學報,2012,31(5):857-866. Liang Cheng,Lin Kuangfei,Zhang Wen,et al. Effects of sulfur and selenium treatment on plant growth and some physiological characteristics of rice under cadmium stress[J]. Journal of Agro-Environment Science,2012,31(5):857—866.(in Chinese with English abstract)

[51] 孫惠莉,呂金印.硫對鎘脅迫下小白菜葉片AsA-GSH循環(huán)和植物絡合素含量的影響[J].農業(yè)環(huán)境科學學報,2013,32(7):1294-1301. Sun Huili,Lü Jinyin. Effects of sulfur on ascorbate-glutathione cycle and the content of phytochelatins in the leaves of pakchoi(Brassica chinensis L.) under cadmium stress[J]. Journal of Agro-Environment Science,2013,32(7):1294-1301.(in Chinese with English abstract)

[52] 李奔,謝文娟,胡敏予.施用復合肥和腐植酸液肥對莧菜重金屬富集與轉運的影響[J].西北農林科技大學學報:自然科學版,2013,41(9):105-111. Li Ben,Xie Wenjuan,Hu Minyu. Effects of compound fertilizer and humic acid liquid fertilizer amendments on heavy metal accumulation and translocation in Amaranthus mangostanus L.[J]. Journal of Northwest A&F University:Natural Science Edition,2013,41(9):105-111.(in Chinese with English abstract)

[53] Wang Y J,Xiao H L,Wang J X. Using humic acid for remediation of sandy soils contaminated by heavy metal[J]. Sciences in Cold &Arid Regions,2009,1(3):267-276.

[54] 李文蔚,張沁怡,羅亞成,等.腐殖酸和水旱輪作對鎘污染土壤種植的稻糙米品質的影響[J].湖南農業(yè)科學,2014,22:31-33,36. Li Wenwei,Zhang Qinyi,Luo Yacheng,et al. Effects of humic acid and paddy-upland rotation on rice quality in cadmium contaminated soil[J]. Hunan Agricultural Sciences,2014,22:31-33,36.(in Chinese with English abstract)

[55] 高躍,韓曉凱,李艷輝,等.腐殖酸對土壤鉛賦存形態(tài)的影響[J].生態(tài)環(huán)境,2008,17(3):1053-1057. Gao Yue,Han Xiaokai,Li Yanhui,et al. Effects of humic acid on lead fractions in soil[J]. Ecology and Environment,2008,17(3):1053-1057.(in Chinese with English abstract)

[56] 李麗,檀文炳,王國安,等.腐殖質電子傳遞機制及其環(huán)境效應研究進展[J].環(huán)境化學,2016,35(2):254-266. Li Li,Tan Wenbing,Wang Guoan,et al. Electron transfer mechanisms of humic substances and their environmental implications:A review[J]. Environmental Chemistry,2016,35(2):254-266.(in Chinese with English abstract)

Inhibiting Cd and Pb accumulation in summer maize by sulphate-based fertilizers application

Sun Hongxin1,Xue Peiying1,Zhao Quanli2,Feng Yujia1,Geng Liping1,Chen Miaomiao3,Liu Wenju1※
(1. College of Resources and Environmental Sciences,Hebei Agricultural University/Key Laboratory of Ecological Environment of Farmland in Hebei,Baoding 071000,China;2. The Teaching Experiment Field,Hebei Agricultural University,Baoding 071000,China;3. College of Science and Technology,Hebei Agricultural University,Baoding 071001,China)

With the development of industry and agriculture,farmland soils irrigated with wastewater in China have been suffering heavy metal damages for many years,which have harmful impact on crops by adsorption and translocation. Therefore,it is urgent to remediate farmland soils contaminated with heavy metals as they will pose risk to human via food crop production and consumption. Agricultural measures such as fertilization have become promising methods because they are cost-effective and eco-friendly to remediate heavy metal contaminated soils. In this study,the field experiments were conducted in Fu River region to explore the effects of five different fertilization treatments on availability of cadmium(Cd) and lead(Pb) in soil as well as Cd and Pb translocation and accumulation in summer maize. The results showed that there were no significant difference in soil Cd and Pb availability and the translocation and accumulation in summer maize between CK(conventional fertilization:corn special compound fertilize,potassium chloride,urea) and the other two treatments,which were N-P-K(urea,diammonium phosphate and potassium chloride) and HA-N-P(humic acid combined fertilizer,urea and diammonium phosphate) treatments. In addition,compared with CK,the soil available Cd levels in the treatments of HA-S-P(humic acid combined fertilizer,ammonium sulfate and diammonium phosphate) and S-P-K(ammonium sulfate,diammonium phosphate and potassium sulfate supplied) reduced by 10.60% and 6.36%,and the soil available Pb concentrations in the treatments of HA-S-P and S-P-K decreased by 11.49% and 6.00%,respectively. Cd and Pb concentrations in maize grains of these five treatments were less than the safety limitation of contaminants in food or food products(GB 2762-2012),but Pb concentrations in maize straws of these five treatments were higher than hygienical standard for feeds(GB13078-2001),accounting for 56.25%-109.13%. Therefore,summer maize straws were suitable for silage which planted on the farmland soils contaminated lightly with Cd and Pb. Furthermore,Cd and Pb bioaccumulation factors of grains were about 100 times less than those of straws. Cd bioaccumulation factors in grains and straws were 6.89-35.00 times higher and 5.13-6.17 times more than those of Pb,respectively. Pb transportation and accumulation in maize could be effectively restrained by sulfur fertilizer for Pb bioaccumulation factors of maize grains and Pb translocation factors of maize in HA-S-P and S-P-K treatments decreased by 44.44%,77.78% and 50.33%,77.10%,compared with that in CK,respectively. Pb concentrations in maize grains of these two treatments significantly(P<0.05) declined by 59.75% and 80.43% compared with that in CK,respectively. However,there were no significant(P>0.05) in Cd bioaccumulation factors and translocation factors of maize among five fertilization treatments. Different fertilization treatments had no significant effect on Cd accumulation and translocation in maize. In conclusion,it was the most suitable fertilization measure to apply fertilizers of ammonium sulfate,diammonium phosphate and potassium sulfate in farmland soils contaminated lightly with Cd and Pb when summer maize planted,followed by application of humic acid combined fertilizer,ammonium sulfate and diammonium phosphate.

heavy metals;fertilizers;pollution;wastewater irrigated farmland;summer maize;cadmium;lead

10.11975/j.issn.1002-6819.2017.01.025

X131.3

A

1002-6819(2017)-01-0182-08

孫洪欣,薛培英,趙全利,馮宇佳,耿麗平,陳苗苗,劉文菊. 配施硫基肥對夏玉米鎘鉛累積的阻控效應[J]. 農業(yè)工程學報,2017,33(1):182-189.

10.11975/j.issn.1002-6819.2017.01.025 http://www.tcsae.org

Sun Hongxin,Xue Peiying,Zhao Quanli,Feng Yujia,Geng Liping,Chen Miaomiao,Liu Wenju. Inhibiting Cd and Pb accumulation in summer maize by sulphate-based fertilizers application[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(1):182-189.(in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2017.01.025 http://www.tcsae.org

2016-05-12

2016-10-17

河北省高等學校創(chuàng)新團隊領軍人才培育計劃(LJRC016);國家自然科學基金(41471398)

孫洪欣,博士生,主要從事土壤環(huán)境質量研究。保定 河北農業(yè)大學資源與環(huán)境科學學院,071000。Email:sunhongxin0303@163.com

※通信作者:劉文菊,教授,博士,博士生導師,主要從事土壤環(huán)境質量研究。保定 河北農業(yè)大學資源與環(huán)境科學學院,071000。Email:liuwj@hebau.edu.cn

猜你喜歡
腐殖酸污染
什么是污染?
什么是污染?
堅決打好污染防治攻堅戰(zhàn)
當代陜西(2019年7期)2019-04-25 00:22:18
堅決打好污染防治攻堅戰(zhàn)
豬糞中添加腐殖酸添加劑可降低糞便中的臭氣
含腐殖酸固廢肥對菠菜產量及效益的影響
納米腐殖酸對重金屬鉻的吸附熱力學及動力學
化工進展(2015年6期)2015-11-13 00:27:33
對抗塵污染,遠離“霾”伏
都市麗人(2015年5期)2015-03-20 13:33:49
季銨型陽離子纖維素對水中腐殖酸的吸附
腐殖酸與錒系金屬離子相互作用的研究進展
主站蜘蛛池模板: 国产精品人莉莉成在线播放| 精品国产中文一级毛片在线看 | 国产九九精品视频| 伊人查蕉在线观看国产精品| 国产成人夜色91| h视频在线播放| 国产精品性| 99热国产在线精品99| julia中文字幕久久亚洲| 美女被操91视频| 女人18毛片水真多国产| 国产一级裸网站| 国产成年女人特黄特色大片免费| 久久中文字幕av不卡一区二区| 亚洲欧洲日产国产无码AV| 最新无码专区超级碰碰碰| 国产精品夜夜嗨视频免费视频| 日韩av高清无码一区二区三区| 国产极品美女在线播放| 国产精品污污在线观看网站| 亚洲视频一区在线| 亚洲人成亚洲精品| 亚洲AV一二三区无码AV蜜桃| 日韩欧美成人高清在线观看| 成人小视频网| 免费毛片网站在线观看| 婷婷六月在线| 精品国产女同疯狂摩擦2| 日本在线视频免费| 五月综合色婷婷| 伊人网址在线| 99视频免费观看| 亚洲成在人线av品善网好看| 国产成人精品在线1区| 国产剧情国内精品原创| 六月婷婷激情综合| 午夜a级毛片| 欧美成人看片一区二区三区| 日韩精品毛片| 欧美日韩高清| 国产成年女人特黄特色毛片免| 亚洲床戏一区| 日韩精品成人网页视频在线 | a色毛片免费视频| 毛片手机在线看| 国产欧美视频在线观看| 国产真实乱子伦视频播放| 91人人妻人人做人人爽男同| 中文一区二区视频| 狠狠色丁婷婷综合久久| 亚洲一区国色天香| 首页亚洲国产丝袜长腿综合| 国产迷奸在线看| 丁香五月激情图片| 无码日韩精品91超碰| 日本成人一区| 色有码无码视频| 911亚洲精品| 亚洲黄色成人| 天堂亚洲网| 国产又色又刺激高潮免费看| 久久综合色播五月男人的天堂| 亚洲国产成人麻豆精品| 国外欧美一区另类中文字幕| 草草影院国产第一页| 被公侵犯人妻少妇一区二区三区| 九色视频在线免费观看| 亚洲国产成人综合精品2020| 一区二区三区高清视频国产女人| 在线视频亚洲欧美| 欧美97色| 精品视频在线观看你懂的一区| 欧美狠狠干| 人妻91无码色偷偷色噜噜噜| 在线国产91| a亚洲天堂| 欧美区一区二区三| 夜夜操国产| 国产青榴视频| 97国产成人无码精品久久久| 毛片基地美国正在播放亚洲| 国产a v无码专区亚洲av|