李貴蕭,牛 凱,侯漢學,張 慧,代養勇,董海洲
(山東農業大學食品科學與工程學院,泰安 271018)
均質壓力對玉米淀粉機械力化學效應的影響
李貴蕭,牛 凱,侯漢學,張 慧,代養勇※,董海洲
(山東農業大學食品科學與工程學院,泰安 271018)
為了研究均質壓力對玉米淀粉微觀結構及理化性質的影響,該文以玉米淀粉為原料,通過 X-射線衍射(X-ray diffraction,XRD)、掃描電鏡(scanning electron microscope,SEM)、快速黏性分析儀(rapid visco analyser,RVA)、偏光顯微鏡(polarizing microscope,PLM)、激光共聚焦顯微鏡(confocal laser scanning microscopy,CLSM)等手段研究不同壓力(20、60、100、140 MPa)下淀粉結構及性質變化,并探究其相互關系,揭示均質壓力對淀粉顆粒機械力化學效應。結果表明:均質壓力處理對玉米淀粉結構及性質產生顯著影響。經20~140 MPa處理后,與原淀粉相比,中央腔及孔道結構模糊,粒徑、糊化黏度減小,結晶度下降,水溶指數和透光率呈上升趨勢。20~100 MPa范圍內,隨均質壓力增大,淀粉顆粒形貌逐漸破壞,球狀凸起結構增加,100 MPa處理時中心球體最為明顯,且與60 MPa相比,結晶度變大,膨脹度顯著下降。當140 MPa處理時,顆粒內部球狀凸起、碎片及孔洞結構顯著減少,偏光十字破壞,糊化焓降低。可見不同均質壓力對淀粉顆粒的無定形區、亞結晶區和結晶區產生不同程度的機械力化學作用,導致淀粉顆粒內部依次發生了聚集和團聚效應。該結果為研究淀粉化學活性及生產高性能變性淀粉提供理論支撐。
壓力;淀粉;物理特性;化學特性;機械力化學效應;結構;均質
機械力化學是利用機械能誘發化學反應及誘導材料組織、結構、性能變化,進而對材料進行改性處理的科學,是目前較為活躍的研究領域之一[1]。機械力化學就是把機械力的能量(碾軋、剪切、高壓、摩擦等)轉化為化學能的過程,其對物質作用過程通常分為三個階段,依次是受力階段、聚集階段、團聚階段[2]。國內外對淀粉機械力作用研究主要集中在球磨等方面[3],目前研究結果表明,高壓微射流、球磨等處理可明顯破壞淀粉結構,劉斌等采用混合液態載體研究高壓微射流均質玉米淀粉的微細化效果,結果顯示二元組分載料介質具有更強的沖擊作用[4];Jitranut L等研究干磨和濕磨可破壞米粉凝膠等理化特性[5];賀永朝等對高壓均質改性淮山藥淀粉及其消化性進行研究,結果顯示均質處理導致淮山藥淀粉顆粒表面破損,結晶度降低,淀粉消化性提高[6],但對此變化發生的化學機理研究不夠清晰。
本文利用高壓均質對物料產生強烈的撞擊、振蕩、剪切和氣穴等機械力作用[7],以玉米淀粉為原料,利用掃描電鏡(scanning electron microscope,SEM)、X-射線衍射(X-ray diffraction,XRD)、差示掃描量熱儀(differential scanning calorimetry,DSC)、激光共聚焦顯微鏡(confocal laser scanning microscopy,CLSM)等手段研究不同壓力下高壓均質對玉米淀粉微觀結構及理化性質的影響,并揭示不同均質壓力對淀粉顆粒機械力化學效應的影響,為了解高壓加工處理對淀粉質食品品質的影響提供理論支撐,同時為研究淀粉物理改性新技術提供理論基礎。
1.1 材料與儀器
玉米淀粉(含水率13.06%,粗蛋白質量分數0.39%,粗脂肪質量分數0.34%):山東諸城興貿玉米開發有限公司;8-氨基芘基-1,3,6三磺酸三鈉鹽(APTS):美國sigma-aldrich公司。
Nicolet is5傅立葉變換紅外光譜儀(美國熱電尼高力公司);LXJ-BⅡ低速大容量多管離心機(上海安亭科學儀器廠);RVA-Eritm黏度分析儀(瑞典波通儀器公司);D8 ADVANCE型X射線衍射儀(德國BRUKER-AXS有限公司);T6新世紀紫外可見分光光度計(北京普析通用儀器有限責任公司);ZKY-303S型高壓均質機(北京中科浩宇科技發展有限公司);B-383POL熱臺偏光顯微鏡(意大利康帕斯公司);QUANTA FEG250掃描電子顯微鏡(美國FEI公司)。
1.2 試驗方法
1.2.1 高壓均質淀粉的制備
取200 g玉米淀粉(干基),配成質量分數為18%的淀粉乳,攪拌均勻,利用高壓均質機分別經20、60、100、140 MPa壓力處理30 min,待壓力穩定后收集樣品,40 ℃通風干燥48 h,研磨、過200目篩,密封備用。
1.2.2 水溶指數和膨脹度的測定
準確稱取 9g玉米淀粉于燒杯中,配成質量分數為2.0%的淀粉乳450 mL,85 ℃水浴糊化30 min,3 000 r/min離心30 min。將上清液傾出于已恒質量燒杯中,稱量并記錄,然后于 1 05 ℃烘干至恒質量,稱其質量為溶解的淀粉質量A,稱取離心后沉淀物質量為膨脹淀粉質量P,計算水溶指數和膨脹度。公式如下[8-9]

式中:A為上清液烘干恒量后的質量,g;W為絕干樣品質量,g;P為離心后沉淀物質量,g。
1.2.3 透光率的測定
稱取0.5 g玉米淀粉,配成質量分數為1%的淀粉乳50 mL,沸水浴糊化30 min。糊化完成后冷卻至30 ℃,利用分光光度計于650 nm波長下測定吸光度,以蒸餾水為空白,平行3次,計算淀粉糊的透光率[10]。

1.2.4 糊化特性的測定
根據樣品的含水率,得所需淀粉樣品質量和去離子水量[11],采用快速黏度分析儀進行測定。將樣品與水于RVA樣品盒中充分混合。測定過程中溫度控制如下:50 ℃保持1 min,3.7 min 后上升至95 ℃,95 ℃保持2.5 min,3.8 min后下降至50 ℃,50 ℃保持 2 min。起始10 s內攪拌器轉速為960 r/min,以后保持160 r/min[12]。
1.2.5 熱力學特性分析
稱取5 mg淀粉樣品于鋁制密封坩堝中,加入15 μL去離子水,25 ℃平衡過夜。升溫速率為5 ℃/min,升溫溫度為10~99 ℃,記錄升溫過程的DSC曲線。保護氣為氮氣,流速為60 mL/min。同時記錄膠凝起始溫度(To)、峰值溫度(Tp)、終止溫度(Tc)和膠凝焓變(ΔH)。
1.2.6 X-射線衍射分析
采用X-衍射儀測定結晶特性。測試條件:特征射線CuKα,管壓為40 kV,電流為100 mA,掃描速率為4°/min,測量角度2θ=5°~40°,步長為0.02°,發散狹峰為1°,防發散狹峰為1°,接受狹峰為0.16 mm[8,13]。
1.2.7 掃描電鏡觀察
試樣經40 ℃干燥12 h,均勻涂在模具上,離子濺射噴涂鉑金后,采用掃描電鏡進行觀察。
1.2.8 偏光顯微鏡觀測淀粉顆粒形態
將樣品配成1%淀粉乳置于載玻片上,蓋上蓋玻片后于光學顯微鏡下觀察,記錄淀粉在偏振光源下的形貌特征。
1.2.9 激光共聚焦顯微鏡(CLSM)分析
取10 mg樣品與新鮮配制的15 μL 10 mmol/L APTS(8-氨基芘基-1,3,6三磺酸三鈉鹽,8-Aminopyrene-1,3,6-trisulfonic acid,trisodium salt)(醋酸為溶劑)及15 μL 1 mol/L氰基硼氫化鈉混合,于30 ℃反應15 h,用1 mL去離子水清洗5次,將淀粉顆粒懸浮于100 μL 50%甘油、水混合液中,取一滴懸浮液于CLSM觀察[14]。
1.2.10 激光粒度法測定淀粉顆粒粒徑
采用LS-POF激光粒度分析儀測定淀粉的粒級分布。將玉米淀粉懸浮于去離子水中,將待測液倒入樣品池中超聲波分散20 s后測定。根據激光衍射法進行自動分析,得粒徑分布圖和平均粒徑數據,每個樣品重復4次。
1.2.11 熱穩定性(thermogravimetric analyzer,TGA)分析
采用TA-60熱重分析儀測定樣品的熱穩定性,測試條件:試樣質量5 mg,升溫速率25 ℃/min,溫度范圍25~600 ℃,N2為保護氣。
1.2.12 紅外光譜掃描
將淀粉樣品和溴化鉀于 1 05 ℃干燥至恒質量,稱取1 mg樣品于瑪堪研缽中,加入150 mg溴化鉀粉末,于紅外燈下研磨均勻,裝入壓片模具中抽真空壓制成簿片。采用傅立葉紅外光譜儀對淀粉樣品進行掃描和測定,波長范圍為400~4 000 cm-1,掃描次數為32,分辨率為4 cm-1。
1.2.13 數據處理
試驗數據重復3次,采用Excel、Origin8.5軟件進行數據處理。
2.1 均質壓力對玉米淀粉顆粒形貌的影響
采用掃描電子顯微鏡分別對不同壓力處理的玉米淀粉顆粒進行觀察,其顆粒形態變化見圖1。
玉米原淀粉多數呈現橢圓形,表面較光滑,形狀大小不均,部分為多角形,少數呈無規則形狀[15]。在掃描電鏡下,可觀察到淀粉顆粒表面有微細狀針孔結構。由圖1可知,由于剪切力作用,導致淀粉顆粒表面出現很多碎片;同時顆粒出現很多孔洞結構,可見高壓均質的空化效應也對淀粉微細狀針孔結構產生強烈的作用力,使淀粉顆粒的孔道增大[4]。
由圖1還可看出,20~100 MPa均質處理后,部分顆粒表面出現球狀突起,且隨著壓力增大,凸起結構呈增加趨勢。當140 MPa均質處理時,淀粉顆粒凸起結構、碎片及孔洞結構減少,且表面光滑度增加。此外,由于表面光滑且體積小的淀粉顆粒中直鏈淀粉含量多,結構穩定性高[14],所以高壓均質對其作用不顯著。同時淀粉顆粒在綠色植物組織中分布部位不同,其結構和硬度不同[16],所以不同淀粉顆粒對機械力敏感程度存在差異(見圖1)。
2.2 均質壓力對玉米淀粉顆粒內部微觀結構的影響
CLSM可用于觀察淀粉顆粒內部微觀結構。由圖2可看出,淀粉顆粒中心亮度低的部位為中央腔,顆粒內部暗線為孔道結構,且孔道長度存在差異[14]。
由圖2可知,玉米原淀粉中央腔及孔道結構清晰可見,而隨著均質壓力的增大,部分顆粒該結構逐漸變得模糊,推斷高壓均質對淀粉顆粒無定形區產生了機械力作用,導致顆粒內部發生形變[4];當壓力為60 MPa時,部分顆粒中央開始出現球狀結構,100 MPa時中心球體明顯增大(與圖1對應),說明在60 MPa開始有聚集的趨勢,而100 MPa時淀粉顆粒內部明顯發生了聚集;當壓力為140 MPa時,球體消失,部分淀粉顆粒破壞,推斷該階段聚集形成的球體結構破壞,淀粉進入了團聚階段。

圖1 均質壓力處理玉米淀粉顆粒的掃描電鏡圖(×2 000倍)Fig.1 SEM of corn starch modified by different homogenizing pressures(×2 000)

圖2 均質壓力處理玉米淀粉顆粒的激光共聚焦顯微圖(×1 600倍)Fig.2 CLSM of corn starch modified by different homogenizaion pressures(×1 600)
2.3 均質壓力對玉米淀粉顆粒偏光十字的影響
淀粉由結晶區和非結晶區組成,結晶區淀粉分子鏈呈有序排列,而非結晶區淀粉分子鏈呈無序排列,因兩者密度和折射率存在差別而產生各向異性現象,從而形成偏光十字,該雙折射現象的強度取決于顆粒的大小以及結晶度和微晶取向[17],圖3顯示了不同均質壓力對淀粉顆粒雙折射現象的影響。

圖3 均質壓力處理玉米淀粉顆粒的偏光顯微圖(×400倍)Fig.3 PLM of corn starch modified by different homogenizing pressures(×400)
由圖3可知,原淀粉顆粒偏光十字清晰完整,多數呈垂直交叉的正十字型,交叉點接近于淀粉粒心,表明玉米原淀粉多數近似球狀晶體[18]。經20~100 MPa均質處理后,大部分淀粉顆粒仍具有偏光十字,結合圖4b猜測該階段機械力主要作用于無定形區和亞微晶結構,對晶體結構破壞作用較弱。而140 MPa處理后,部分顆粒結構已破壞、偏光十字變得模糊,表明該處理破壞了部分結晶結構,導致結晶區和非結晶區差異性不明顯,從而使雙折射特性減弱[19],結合圖2e可推斷晶體結構參與了聚集小球的形成。
2.4 均質壓力對淀粉顆粒粒徑分布的影響
淀粉粒徑大小直接影響糊化特性、透光率等理化性質,是決定淀粉品質的重要因素[20]。由圖4a可知,高壓均質后粒徑為7.4~24.9 μm的小顆粒分布顯著增多,而粒徑為24.9~61.9 μm的大顆粒分布顯著減少,當壓力為100 MPa時變化最為明顯,推斷可能是經高壓均質處理后淀粉顆粒內部聚集形成更加緊密的結構,導致粒徑減??;同時也可能是在均質作用下部分以粒團形式存在的淀粉顆粒相互分散[21]。但當壓力為140 MPa時,粒徑呈現增大趨勢,推斷淀粉顆粒內部結構變疏松或顆粒間發生團聚。

圖4 均質壓力對玉米淀粉粒徑分布、分子結構影響和X射線衍射圖Fig.4 Particle size distribution,FT-IR and XRD of corn starch modified by different homogenizing pressures
2.5 均質壓力對玉米淀粉晶體結構的影響
淀粉是一種天然的多晶體系,由有序的結晶區和無序的非結晶區兩部分組成[22]。采用 X -衍射分析淀粉衍射峰的強度和大小,能反映其結晶區域的變化程度。
淀粉顆粒內部結構穩定性順序為:無定形區結構最弱,其次是靠近無定形區的亞結晶區結構,結晶區結構最強;結晶區的結構決定淀粉的構型[22]。玉米淀粉在15.3°、17.1°、18.2°、23.5°有明顯的衍射峰,為典型的A型晶體結構[23]。由圖4b可知,與原淀粉相比,高壓均質后衍射峰型未變,仍為A型晶體結構,但峰強度減小,尤其是亞微晶結構的彌散峰面積明顯減小,同時淀粉結晶度下降,說明淀粉晶體晶格有序化程度降低[17]。當壓力為60 MPa時,結晶度最低(20.3%),結合圖3推斷該受力過程可能破壞了亞微晶結構,但當壓力達到100 MPa時結晶度增大至23.2%,推斷該現象可能與淀粉顆粒內部發生聚集形成球狀結構(見圖1)有關,同時該過程也使淀粉顆粒結構更加緊密,導致粒徑減小(見圖4a)。當壓力達到140 MPa時,結晶度又降低至19.7%,結合圖2推斷該處理破壞了淀粉顆粒部分結晶結構,使結構疏松度增大,導致粒徑增大(見圖4a)。
2.6 均質壓力對玉米淀粉分子結構的影響
由圖4c(紅外圖譜)可知,淀粉在2 930、1 660、1 160、1 080、930 cm-1處具有較強的吸收譜帶。譜圖中1 080 cm-1處的峰源于淀粉的C-O伸縮振動、C-C和O-H的彎曲振動及糖苷鍵 C -O-C不對稱伸縮振動疊加[24-25],文獻認為1 160、1 082 cm-1處紅外吸收與淀粉結晶結構有關,而1 000 cm-1處吸收與淀粉無定形區結構有關[26]。由圖4c可知,均質處理后未出現新的吸收峰,各特征基團的吸收峰位置未發生變化,說明機械力化學作用下淀粉分子結構并未被破壞。
2.7 均質壓力對玉米淀粉糊化特性影響
RVA測定是淀粉從吸水溶脹到顆粒結構因剪切力作用受到破壞,導致淀粉分子浸出的過程[27]。經不同均質壓力處理后糊化特性結果見圖5a。
由圖5a可知,經高壓均質后,峰值黏度、谷值黏度、終值黏度均呈現下降趨勢,且谷值黏度與終值黏度隨均質壓力的增加而降低。這表明高壓均質顯著破壞了淀粉顆粒無定形區結構,導致峰值黏度呈下降趨勢[28];與原淀粉相比,聚集、團聚后結晶區更加緊密,形成的“ghost”結構體積較小,所以谷值黏度、終值黏度也呈現下降趨勢(見圖5a)[29]。

圖5 均質壓力對玉米淀粉糊化特性和熱力學特性的影響Fig.5 Effect of homogenizing pressure on pasting properties and thermal characteristics of corn starch
2.8 均質壓力對玉米淀粉熱力學特性的影響
由圖5b可知,經均質處理后,糊化峰明顯呈現逐漸左移的現象,說明淀粉糊化溫度逐漸呈下降趨勢,推斷其可能與高壓均質處理依次破壞了無定形區、靠近無定形區的亞結晶區及結晶結構有關。由圖5b還可看出,當壓力為0~100 MPa時,峰高變化不明顯,焓變由原來的10.80 J/g緩慢下降至10.50 J/g左右,當140 MPa處理時,與原淀粉相比峰高有減小的趨勢,表明該階段糊化焓明顯減?。?0.05 J/g),可見該階段對部分雙螺旋結構破壞較為明顯[13,30](與圖3、圖4b顯示結晶度破壞相一致),使淀粉分子間相互作用力減弱。
2.9 均質壓力對玉米淀粉水溶指數和膨脹度影響
水溶指數與膨脹度反映了淀粉與水分子之間相互作用力的大小[9],玉米淀粉經不同壓力處理后,在 8 5 ℃的水溶指數與膨脹度如圖6a所示。
由圖6a可知,由于高壓均質對無定形區產生破壞作用,導致直鏈淀粉溶出率增加,所以水溶指數呈上升趨勢[8]。與原淀粉相比,當20~60 MPa均質時,淀粉顆粒處于受力階段,無定形區松動,導致淀粉膨脹度略有上升。當100 MPa均質時,膨脹度顯著下降至10.38 g/g,可見在該階段淀粉結構更緊密,與水的結合能力下降,導致淀粉膨脹度下降。當140 MPa均質時,由于破壞了淀粉顆粒部分結晶結構(見圖3、圖4b),結晶區結構疏松度增大,水分子與羥基結合機會增多,導致膨脹度又顯著(P=0.01003<0.05)增大(11.39 g/g)[9]。

圖6 均質壓力對玉米淀粉水溶指數、膨脹度和透光率的影響Fig.6 Effect of homogenizing pressure on solubility,expansion and transmittance of corn starch
2.10 均質壓力對玉米淀粉透光率影響
透光率是淀粉糊所表現出的重要外在特征之一,直接關系到淀粉類產品的外觀和用途,進而影響到產品的可接受性[31]。研究表明,透光率與淀粉的水溶指數和淀粉的糊化度呈正相關[32],由于高壓均質對無定形區產生破壞作用,導致淀粉的水溶指數和淀粉糊化度增大(見圖6a),所以淀粉透光率逐漸增大(見圖6b)。但當壓力為100 MPa時,處于聚集階段的淀粉顆粒內部結構更緊密,不易吸水,因此透光率未增大(見圖6b)。
2.11 均質壓力對玉米淀粉熱穩定性的影響
圖7a、b分別為淀粉經不同均質壓力處理后TGA(熱失重分析)和DTG(熱失重速率分析)曲線圖譜。
由圖7a可看出,玉米淀粉的TGA曲線主要有兩個失重階段,分別為60~150 ℃和260~390 ℃。在60~150 ℃階段質量略有下降,這主要是揮發性組分及吸附水的散失所致[33];而260~390 ℃階段失重明顯,應該與淀粉糖類有機物熱解逸散有關[34]。60~150 ℃階段,100 MPa均質處理后的淀粉剩余百分率最低(見圖7a),說明該階段內部結構緊密,與水的結合能力弱,吸附水最易散失。260~390 ℃階段,均質處理后淀粉失重起始溫度升高,當140 MPa處理最為明顯(見圖7a),可見均質處理后(尤其是淀粉團聚后)淀粉熱穩定性增強。

圖7 均質壓力處理玉米淀粉的TGA和DTG曲線圖Fig.7 TGA and DTG diagrams of corn starch modified by different homogenizing pressures
由圖7b可知,與原淀粉相比,溫度在260~390 ℃時,高壓均質后淀粉失重速率呈現先增加后減小再增加的趨勢,60 MPa處理時失重速率最大,100 MPa速率明顯減小,140 MPa處理時失重速率又增大。推斷受力階段,無定形區和亞微晶結構受到破壞(見圖3、圖4b),所以淀粉熱解快[8];而聚集時因內部形成球狀,結構變得緊密,所以淀粉熱解慢[35];當淀粉發生團聚時,因部分結晶區受到破壞,結構又變疏松,因此失重速率又開始增大。
研究結果表明,高壓均質的強剪切作用和“空化效應”對玉米淀粉結構和性質產生了顯著影響,即高壓均質對淀粉顆粒產生了機械力作用。
1)經20~60 MPa壓力處理,中央腔及孔道結構模糊,內部開始有球狀凸起結構,無定形區及亞微晶結構受到破壞(受力階段)。
2)當100 MPa處理時,與60 MPa處理相比,淀粉顆粒內部聚集形成球狀結構,導致結晶度上升,熱穩定性增強;同時膨脹度、黏度特征值、糊化溫度下降(聚集階段)。
3)當壓力為140 MPa時,顆粒內部球狀凸起、碎片及孔洞結構顯著減少,偏光十字破壞,糊化焓降低,晶體結構受到破壞,淀粉顆粒發生團聚(團聚階段)。
4)由于高壓均質處理破壞了玉米淀粉顆粒結構,所以該機械力作用對淀粉理化性質產生顯著影響。
[1] 榮華偉,方瑩. 機械力化學研究進展[J]. 廣東化工,2006,33(10):33-36. Rong Huawei,Fang ying. The research and development of mechano-chemistry[J]. Guangdong Chemical Industry,2006,33(10):33-36.(in Chinese with English abstract)
[2] Saranu S,Selve S,Kaiser U,et al. Effect of large mechanical stress on the magnetic properties of embedded Fe nanoparticles[J]. Beilstein Journal of Nanotechnology,2011,2(2):268-75.
[3] 郝征紅,張炳文,郭珊珊,等. 振動式超微粉碎處理時間對綠豆淀粉理化性質的影響[J]. 農業工程學報,2014,(18):317-324. Hao Zhenghong,Zhang Bingwen,Guo Shanshan,et al. Influence on physical and chemical properties of Mung bean starch by vibration superfine grinding time[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2014,30(18):317-324.(in Chinese with English abstract)
[4] 劉斌,張媛,馮濤,等. 混合液態載體對高壓射流均質玉米淀粉顆粒微細化的影響[J]. 食品科學,2013,34(17):78-81. Liu Bing,Zhang Yuan,Feng Tao,et al. Effect of mixed liquid carrier on the crystalline structure of corn starch granules after high pressure jet homogenization[J]. Food Science,2013,34(17):78-81.(in Chinese with English abstract)
[5] Jitranut L,Jirarat A. Effects of dry-milling and wet-milling on chemical,physical and gelatinization properties of rice flour[J]. Rice Science,2016,23(5):274-281.
[6] 賀永朝,吳梟锜,宋洪波,等. 高壓均質改性淮山藥淀粉及其消化性的研究[J]. 現代食品科技,2016,32(5):227-233. He Yongzhao,Wu Xiaoqi,Song Hongbo,et al. Effect of high-pressure homogenization on the properties and digestibility of dioscorea opposita starch[J]. Modern Food Science and Technology,2016,32(5):227-233.(in Chinese with English abstract)
[7] 孟爽,馬鶯,劉天一. 應用高壓均質技術制備玉米淀粉-硬脂酸復合物[J]. 哈爾濱工業大學學報,2015,47(4):52-57. Meng Shuang,Ma Ying,Liu Tianyi. Corn starch-stearic acid complexes prepared by high pressure homogenization technology[J]. Journal of Harbin Institute of Technology,2015,47(4):52-57.(in Chinese with English abstract)
[8] Sukhija S,Singh S,Riar C S. Physicochemical,crystalline,morphological,pasting and thermal properties of modified lotus rhizome(Nelumbo nucifera) starch[J]. Food Hydrocolloids,2016,60:50-58.
[9] Abegunde O K,Mu Taihua,Chen Jingwang,et al. Physicochemical characterization of sweet potato starches popularly used in Chinese starch industry[J]. Food Hydrocolloids,2013,33(2):169-177.
[10] 涂宗財,余莉,尹月斌,等. 動態高壓微射流對馬鈴薯直鏈淀粉性質和結構的影響[J]. 食品與發酵工業,2014,40(3):46-51. Tu Zongcai,Yu Li,Yin Yuebin,et al. Effects of dynamic high-pressure microfluidization on the structural and physicochemical properties of potato amylose starches[J]. Food and Fermentation Industries,2014,40(3):46-51.(in Chinese with English abstract)
[11] Gerits L R,Pareyt B,Delcour J A. Wheat starch swelling,gelatinization and pasting:Effects of enzymatic modification of wheat endogenous lipids[J]. LWT-Food Science and Technology,2015,63(1):361-366.
[12] Tong Chuan,Chen Yaling,Tang Fufu,et al. Genetic diversity of amylose content and RVA pasting parameters in 20 rice accessions grown in Hainan,China[J]. Food Chemistry,2014,161(11):239-245.
[13] Warren F J,Gidley M J,Flanagan B M. Infrared spectroscopy as a tool to characterise starch ordered structure-a joint FTIR-ATR,NMR,XRD and DSC study[J]. Carbohydrate Polymers,2016,139:35-42.
[14] 陳佩. 不同鏈/支比玉米淀粉的形態及其在有/無剪切力下糊化的研究[D]. 廣州:華南理工大學,2010:79-80. Chen Pei. Morphology and Gelatinization of Corn Starches with Different Amylose/Amylopectin Content under Shearless and Shear Conditions[D]. Guangzhou:South China University of Technology,2010:79-80.(in Chinese with English abstract)
[15] Wang Shaoqing,Wang Linlin,Fan Wenhao,et al. Morphological analysis of common edible starch granules by scanning electron microscopy[J]. Food Science,2011,32(15):74-79.
[16] 蒲華寅. 等離子體作用對淀粉結構及性質影響的研究[D].廣州:華南理工大學,2013:30-46. Pu Huayin. Effects of Plasma on Structure and Properties of Starch[D]. Guang zhou:South China University of Technology,2013:30-46.(in Chinese with English abstract)
[17] 張斌,羅發興,黃強,等. 不同直鏈含量玉米淀粉結晶結構及其消化性研究[J]. 食品與發酵工業,2010(8):26-30. Zhang Bin,Luo Faxing,Huang Qiang,et al. Crystalline structures and digestibility of corn starches with different amylose/amylopectin content[J]. Food and Fermentation Industries,2010(8):26-30.(in Chinese with English abstract)
[18] Arráiz H,Barbarin N,Pasturel M,et al. Starch granules identification and automatic classification based on an extended set of morphometric and optical measurements[J]. Journal of Archaeological Science:Reports,2016,7:169-179.
[19] 周海宇,任瑞林,包亞莉,等. 高靜壓酯化木薯淀粉結構及其理化性質的研究[J]. 現代食品科技,2016,32(2):107-112. Zhou Haiyu,Ren Ruilin,Bao Yali,et al. Structural and physicochemical properties of tapioca starch modified by esterification under high hydrostatic pressure[J]. Modern Food Science and Technology,2016,32(2):107-112.(in Chinese with English abstract)
[20] Asmeda R,Noorlaila A,Norziah M H. Relationships of damaged starch granules and particle size distribution with pasting and thermal profiles of milled MR263 rice flour[J]. Food Chemistry,2015,191(3):261-262.
[21] 夏寧,龔倩,王金梅,等. 微射流均質處理對碎米淀粉性質影響的研究[J]. 食品工業科技,2012,33(10):151-153. Xia Ning,Gong Qian,Wang Jinmei,et al. Preparation and characterization of broken rice starch by high pressure homogenization[J]. Science and Technology of Food Industry,2012,33(10):151-153.(in Chinese with English abstract)
[22] 張明. 濕熱協同微波處理對淀粉理化性質及消化性的影響[D]. 廣州:華南理工大學,2014:3-8. Zhang Ming. Effect of Heat-moisture Combined withMicrowave Treatment on Physicochemical and Digestibility Property of Starch[D]. Guang zhou:South China University of Technology,2014:3-8.(in Chinese with English abstract)
[23] Bian Linlin,Chung H J. Molecular structure and physicochemical properties of starch isolated from hydrothermally treated brown rice flour[J]. Food Hydrocolloids,2016,60:345-352.
[24] Flores M A,Jimnez E M,Mora-escobedo R. Determination of the structural changes by FT-IR,Raman,and CP/MAS 13C NMR spectroscopy on retrograded starch of maize tortillas[J]. Carbohydrate Polymers,2012,87(1):61-68.
[25] Wani I A,Jabeen M,Geelani H,et al. Effect of gamma irradiation on physicochemical properties of Indian Horse Chestnut (Aesculus indica Colebr.) starch[J]. Food Hydrocolloids,2014,35(1):253-263.
[26] Jiang Qianqian,Gao Wenyuan,Li Xia,et al. Effect of acid-ethanol on the physicochemical properties of Dioscorea opposita Thunb and Pueraria thomsonii Benth starches[J]. Starch/Starke,2011,635:302-310.
[27] Cozzolino D,Roumeliotis S,Eglinton J. Relationships between starch pasting properties,free fatty acids and amylose content in barley[J]. Food Research International,2013,51(2):444-449.
[28] Liu Chengmei,Liang Ruihong,Dai Taotao,et al. Effect of dynamic high pressure microfluidization modified insoluble dietary fiber on gelatinization and rheology of rice starch[J]. Food Hydrocolloids,2016,57:55-61.
[29] Carrillo-Navas H,Rosa A D L,Gómez-Luría D,et al. Impact of ghosts on the viscoelastic response of gelatinized corn starch dispersions subjected to small strain deformations[J]. Carbohydrate polymers,2014,110(38):156-162.
[30] Oliveira M M D,Tribst A A L,Oliveira R A D,et al. Effects of high pressure processing on cocoyam,Peruvian carrot,and sweet potato:Changes in microstructure,physical characteristics,starch,and drying rate[J]. Innovative Food Science &Emerging Technologies,2015,31:45-53.
[31] 高倫江,曾順德,曾志紅,等. 蕉藕淀粉與薯類淀粉特性對比研究[J]. 中國糧油學報. 2016,31(1):17-20. Gao Lunjiang,Zeng Shunde,Zeng Zhihong,et al. Comparative study on properties of canna starch and potato starch[J]. Journal of The Chinese Cereals and Oils Association,2016,31(1):17-20.(in Chinese with English abstract)
[32] Li Wenhao,Gao Jinmei,Wu Guiling,et al. Physicochemical and structural properties of A-and B-starch isolated from normal and waxy wheat:Effects of lipids removal[J]. Food Hydrocolloids,2016,60:364-373.
[33] 石海信,方麗萍,王愛榮,等. 微波輻射下木薯淀粉結構與性質的變化[J]. 食品科學,2015,36(3):68-74. Shi Haixin,Fang Liping,Wang Airong,et al. Variations in structure and properties of cassava starch after microwave irradiation[J]. Food Science,2015,36(3):68-74.(in Chinese with English abstract)
[34] Szymońska J,Molenda M,Wieczorek J. Study of quantitative interactions of potato and corn starch granules with ions in diluted solutions of heavy metal salts[J]. Carbohydrate Polymers,2015,134:102-109.
[35] 盧麒麟,黃彪,唐麗榮,等. 機械力化學作用下納米淀粉的制備與性能[J]. 中國糧油學報,2014,29(11):24-29. Lu Qilin,Huang Biao,Tang Lirong,et al. Preparation and characterization of starch nanoparticles by mechanochemistry[J]. Journal of the Chinese Cereals and Oils Association,2014,29(11):24-29.(in Chinese with English abstract)
Effects of homogenizing pressure on mechanochemical properties of corn starch
Li Guixiao,Niu Kai,Hou Hanxue,Zhang Hui,Dai Yangyong※,Dong Haizhou
(College of Food Science and Engineering,Shandong Agricultural University,Tai’ an 271018,China)
Starch,as one of the most abundant natural polymers,is available,sustainable and non-toxic. However,it has not exhibited great development potential and application prospect in the food processing fields due to the low transparency and solubility. Mechanochemistry is the treatment process of converting the mechanical energy,such as grinding,shearing,pressure and friction,into chemical energy,during which the structure and properties of materials are changed. In order to improve the properties of starch and expand its application fields,corn starch was processed by high pressure homogenization. High pressure homogenization could produce strong shearing,vibration,cavitation effects,and so on,which was a complex process that could change the structure and properties of materials. In this research,corn starch was used as raw material,and was processed at the homogenizing pressures of 20,60,100 and 140 MPa successively to analyze the changes of microstructure and physicochemical properties. The mechanochemical effects of homogenizing pressure on corn starch were revealed. In this study,the structure and properties of corn starch modified by different homogenizing pressures,such as crystallinity and morphology structure,were analyzed by X-ray diffraction(XRD),polarizing microscope(PLM),scanning electron microscope(SEM) and confocal laser scanning microscopy(CLSM). The physicochemical properties of starch,including solubility,swelling power,transmittance,gelatinization properties and thermal characteristics,were studied by rapid visco analyzer(RVA) and differential scanning calorimetry(DSC),and so on. And the relationships and mechanisms between structure and properties were revealed. The results showed that compared with native corn starch,the granule appearance of modified starch had changed. There occurred the spherical structure with the increase of the pressure from 20 to 100 MPa,and this phenomenon was the most pronounced when the homogenizing pressure was 100 MPa. The XRD showed that corn starch had an A type pattern with sharp peaks of 15.3°,17.1°,18.2° and 23.5°,respectively. And the type of corn starch modified by different homogenizing pressures was not changed. However,the crystallinity decreased after homogenization treatment. When the homogenizing pressure was 140 MPa,the results from PLM showed the crystalline structure of corn starch was damaged. The results demonstrated that crystalline regions of starch granule were destroyed at the pressure of 140 MPa. In addition,as the homogenizing pressure increased from 20 to 140 MPa,the average particle sizes of corn starch granules decreased. And it revealed that high pressure homogenization had reduced the particle sizes of starch through cavitation and shearing. Meanwhile,the properties of gelatinization weakened gradually,including the peak intensity,low viscosity,final viscosity and gelatinization temperature. Whereas,with the increasing of homogenizing pressure,the solubility and transmittance of corn starch modified by different homogenizing pressures showed a significant increase. To sum up,the present results reveal that the influence of high pressure homogenization on the structure and properties of corn starch is obvious. And different homogenizing pressures have different mechanochemical effects on the amorphous,sub-crystalline regions and crystalline regions of starch granule,and typical aggregation and agglomeration effects occur successively in starch granules.
pressure;starch;physical properties;chemical properties;mechanochemical effects;structure;homogenization
10.11975/j.issn.1002-6819.2017.01.037
TS231
A
1002-6819(2017)-01-0271-07
李貴蕭,牛 凱,侯漢學,張 慧,代養勇,董海洲. 均質壓力對玉米淀粉機械力化學效應的影響[J]. 農業工程學報,2017,33(1):271-277.
10.11975/j.issn.1002-6819.2017.01.037 http://www.tcsae.org
Li Guixiao,Niu Kai,Hou Hanxue,Zhang Hui,Dai Yangyong,Dong Haizhou. Effects of homogenizing pressure on mechanochemical properties of corn starch[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(1):271-277.(in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2017.01.037 http://www.tcsae.org
2016-06-15
2016-10-26
國家自然科學基金項目(31471619);山東省自然科學基金項目(ZR2014JL020)
李貴蕭,女,山東陵縣人,主要從事糧油加工方面的研究。泰安山東農業大學食品科學與工程學院,271018。Email:1159823746@qq.com
※通信作者:代養勇,男,山東聊城人,副教授,博士,主要從事糧油加工方面的研究。泰安 山東農業大學食品科學與工程學院,271018。Email:dyyww@163.com