王志勇,湯濤林,徐志強,倪漢華
(1. 農業部漁業裝備與工程重點開放實驗室,上海 200092;2. 中國水產科學研究院漁業機械儀器研究所,上海 200092)
漁船拖網絞車張力自動控制系統設計及試驗
王志勇1,2,湯濤林2,徐志強2,倪漢華2
(1. 農業部漁業裝備與工程重點開放實驗室,上海 200092;2. 中國水產科學研究院漁業機械儀器研究所,上海 200092)
為了補償拖網漁船作業過程中絞車綱繩張力波動或漁船轉向造成的負載不對稱性,保持網具良好的開口形狀,基于電液控制技術設計了拖網張力自動控制系統。對拖網曳綱張力采集方法進行了研究,采用油壓力傳感器間接測量拖網左右曳綱張力數據作為輸入信號,傳輸到控制器進行邏輯運算,控制先導溢流閥調整馬達溢流壓力,改變絞車輸出扭矩,從而驅動拖網絞車收、放來控制左右曳綱張力,達到系統動態平衡。并基于實驗室虛擬儀器工程平臺(laboratory virtual instrument engineering workbench,LabVIEW)對系統軟件進行了設計,實現絞車張力控制系統的參數設置與控制管理。為了驗證系統的張力控制特性和實用性,對系統進行了海上應用試驗,在張力自動控制模式下,拖網絞車根據漁船航速和水流自動調節收放網速度,減少作業過程中曳綱張力波動。拖曳過程中拖網曳綱長度范圍為350~490 m,絞車曳綱張力范圍為118~148 kN,對應系統壓力為2.3~2.7 MPa,漁船平均拖速為5.6節。試驗結果表明,左右曳綱張力差在合理范圍內,系統能很好調節曳綱張力大小,為漁船安全生產提供了保障;啟用張力控制系統后網口面積比未使用張力控制系統前增大了9.5%,有效調整了網口擴張,提高了捕撈效率。
漁業;漁船;控制系統;拖網絞車;曳綱張力;電液控制;張力平衡
拖網捕撈是中國捕撈產量最高的捕撈方式,拖網絞車作為拖網漁船捕撈作業中最為重要的設備,其性能好壞至關重要[1-2]。拖網漁船上一般配置2臺拖網絞車,分別牽引網具的左、右曳綱,拖曳網具在漁場前行。拖網漁船上拖網過程中由于風浪、底質、轉向變化以及海底障礙物等影響都會引起拖網曳綱上的張力波動,對拖網絞車的性能和壽命具有很大的影響,另外,曳綱張力波動過大也會影響拖網網口擴張,引起網口形狀變形,導致捕撈效率低下[3-8]。國外從20世紀80年代開始起就對拖網曳綱張力自動控制技術開展了研究[9-14],研制了恒張力絞車控制系統,目前,其大型的拖網加工船一般都配套曳綱張力控制設備,系統自動根據設定的曳綱長度值調節絞車張力,用于補償曳綱長度變化以及漁獲數量變化而引起的負載拖力變化,能夠及時有效的補償船體受海浪引起的附加運動[15-18]。國內的研究學者也對拖網漁船波浪補償[19-21]、海洋恒張力絞車液壓控制等技術分別進行了研究[22-24],但相關研究的應用相對較少。
本文基于電液控制技術,采用閥控液壓馬達恒壓力方式實現拖網曳綱張力恒定,詳細介紹了系統控制過程,重點分析了拖網作業不同階段控制特性和效果,旨在提高中國漁船捕撈裝備自動化水平,為漁船安全生產提供技術保障。
1.1 原理設計
控制原理見圖1所示,通過在液壓油路中油壓力傳感器測量馬達輸出壓力,根據馬達壓力與輸出扭矩的關系,將采集的絞車液壓油路高壓端油液壓力值通過壓力與張力換算模塊轉算為張力值信號,換算公式為

式中T為拖網曳綱張力,N;P為液壓馬達高壓口壓力,MPa;Q為馬達流量,L/min;D為絞車滾筒直徑,m;η為機械效率,取值0.95。

圖1 電液控制技術框圖Fig.1 Block diagram of electro hydraulic control technology
以曳綱張力為反饋信號,張力值信號通過數據通訊線傳輸給可編程邏輯控制器(programmable logic controller,PLC)控制先導閥調整溢流閥壓力,實現控制左、右絞機馬達高壓端溢流壓力[25-27]。絞車放綱長度通過脈沖編碼器來測量,編碼器信號通過PLC高速計數模塊進行處理,在操作界面上可以轉換成曳綱放繩長度,作為曳綱張力控制的反饋信號。
液壓控制系統如圖2所示,拖網過程中,絞車大部分時間處于收綱微動平衡狀態,絞車收綱拉力與網具受力平衡,油泵一直開啟供油從而溢流閥長期處于開啟狀態,保證馬達高壓端油壓。由于波浪引起船舶上下升沉運動導致拖網曳綱張力大小隨機變化,當漁船轉向或波浪引起曳綱張力變小時,PLC通過先導閥5提高溢流閥4溢流壓力,液壓控制系統驅動左、右絞車收綱,調整左右曳綱張力與位置,如果需要放綱則降低溢流閥壓力網具將在水流帶動下放出,使左右曳綱達到動態平衡。

圖2 液壓控制原理圖Fig.2 Hydraulic control schematic diagram
1.2 控制功能
拖網過程中曳綱張力主要通過控制溢流閥壓力變化來實現,溢流閥先導口控制器通過端口輸出0~20 mA電流信號,通過比例放大器轉換為0~5 V電壓信號控制先導閥0~1 MPa輸出,從而保證0~4 MPa油壓溢流。
整個拖網作業過程主要包括放網、拖曳和起網階段,系統控制流程如圖3所示。當漁船達到指定漁場后,操作人員將網囊從艉滑道拋入海中,依靠水的阻力將網身、手綱、網板拖入水中。操作人員手動操縱絞車松放曳綱,當曳綱放出50 m后轉入自動放網階段,連通閥7得電,此時系統根據設定張力值自動對稱的將兩邊曳綱放出,保證左右絞車受力平衡,放網速度穩定。因為放網速度過慢會導致作業效率低下,而放網速度過快會導致曳綱松弛引起網板傾覆,網具變形,導致放網過程失敗。放網長度達到設定長度時,系統由放網轉換為自動拖曳工作,此時,控制器自動采集左右絞車油路壓力信號,經過換算轉換成絞車曳綱張力,通過比例積分微分(proportion in tegration differentiation,PID)運算控制保證此張力差為一個定值,通過調整左右絞車工作壓力差值,使拖網曳綱在一定長度變化范圍內保持張力恒定,左右曳綱絞車的最大繩長差設為30 m。系統最小、最大拖曳壓力可隨時調整,最大拖曳壓力設定線性溢流閥的壓力,具體對應關系為0~4 M Pa線性對應0~5 V。當拖曳結束后,拖網絞車開始起網,此時網具在水中的拖曳速度為漁船航速與絞車起網速度之和,拖網曳綱張力最大。起網壓力可通過人機界面調整,設定值線性對應溢流閥的設定壓力輸出。

圖3 系統控制流程圖Fig.3 Control flow chart of system
1.3 軟件設計
基于實驗室虛擬儀器工程平臺(laboratory vi rtual Instrument engineering workbench,LabVIEW)進行了張力平衡控制系統人機界面設計,LabVIEW具有強大的計算機圖形環境,采用可視化的圖形編程語言和平臺,能與整個硬件系統無縫連接。系統軟件設計主要由參數設置、信息管理、系統監控、歷史數據查詢等子系統組成,主界面如圖4所示,分別實現系統設置、張力平衡系統信息設置與管理、液壓動力系統自動化操作與監視、歷史信息查詢等功能。軟件使用操作系統:windows xp,windows7操作系統;軟件數據庫:基于微軟Access數據庫開發;

圖4 系統軟件設計界面Fig.4 Design interface of system software
為了驗證系統的實用性,2015年3月在中國東海海域對拖網張力自動控制系統進行了海上試驗,試驗漁船為上海開創漁業公司“開裕號”漁船,氣控拖網絞車主液壓額定工作壓力4 MPa,鋼絲繩直徑32 mm,測量了一個網次拖網左右曳綱作業數據,如表1所示。

表1 系統試驗結果Table 1 System experiment result
由表1中數據分析,放網開始時船速為5.4~7.9節,張力自動控制系統自動調節左右絞車放網速度基本一致,隨著放綱長度增加,拖網絞車曳綱張力也逐漸增大,但左右曳綱張力始終處于平衡狀態,使得網具具有穩定的對地速度進而保證網具具有穩定的下沉速度以及理想的網口擴張。
拖曳過程是拖網作業最重要也是持續時間最長的步驟,曳綱長度范圍:350~490 m;絞車工作壓力:2.3~2.7 MPa;絞車拉力118~148 kN;拖速范圍:5.3~5.8節,平均拖速為5.6節。漁船勻速拖曳,當放綱長度和水深不變時,拖網曳綱處于平衡狀態,主要受到水動力、曳綱自重和水中漁具的阻力作用。拖網絞車大部分時間處于恒張力狀態,曳綱張力始終在一定范圍內波動。當曳綱張力差超過設定范圍時,張力自動控制系統控制拖網絞車放出綱繩達到左右曳綱張力平衡。
起網時由于網具相對水流速度增加,拖網曳綱張力開始增大,為了防止曳綱過度絞收,損壞曳綱和網具,此時船舶航速減半,航速2~4節,同時絞收曳綱。單拖漁船拖網絞車曳綱的最大負荷出現于網板即將露出水面時,網板的水阻力和重量以及網具的阻力完全由拖網絞車承擔,曳綱收絞完畢后,網板固結于網板架上,由于網具對水速度減小,拖網絞車拉力驟減[28-30],測量數據與拖網作業實際情況比較吻合。
借助船上網位儀采集了應用拖網張力控制系統前后的網口形狀圖,如圖5a和圖5b所示。對網形測試結果進行了分析,圖5a為未使用張力平衡控制系統時網形,圖5b為使用曳綱張力控制系統網形,對比2個圖形,圖5a中網口變形較為嚴重,左右兩端出現明顯的銳角;圖5b中網形張開形狀較好,呈流暢的橢圓形網口,網形變形量顯著減小。對測量網形圖進行計算,由圖中可知每格為20 m,對應網形數據如表2所示,在網口周長基本一致的情況下,啟用張力控制系統后網口高度增大明顯,改善了網口擴張,網口面積增大了9.5%,有效提高了捕撈效率。

圖5 拖網作業網口形狀Fig.5 Shape of net mouth

表2 網形測試數據Table 2 Test data of net shape
張力控制過程中,通過在不同作業模式下設定溢流閥開口壓力,根據需要調整拖網曳綱最大張力。當左右曳綱張力差值最大為25 kN時,右舷絞車能夠實時放出綱繩,張力控制系統對曳綱張力隨波浪變化的動態響應性能較好。試驗過程中,左、右舷絞車工作壓力值從1.6 MPa變化至3.2 MPa,無論在放網、起網階段還是拖曳階段,左舷絞車和右舷絞車馬達進油閥口壓差始終保持恒定,減少了絞車速度受負載變化的干擾。
該張力自動控制系統采用溢流閥控制系統相對恒定的壓力,由于該張力控制采用馬達高壓口壓力恒定來實現拖網曳綱張力平衡,所以液壓泵一直供應液壓油,液壓系統會產生熱量,有一定的功率損失,一般適用于中小功率的絞車[31]。但該拖網絞車液壓系統為低壓系統,所以功耗與散熱并不是很大,另外,該系統設計簡單、適應性強、可靠性高、成本較低,因此相對于漁船應用更為經濟、實用。
1)在放網初始階段及收網的最后階段,由于網板及網具距離漁船較近,拖網絞車一般為人工操作,采用速度控制。當曳綱長度不變,而拖網船加速或減速運動時,曳綱張力、位置和形狀受慣性力的影響有較大的不同。漁船加速運動時拖網曳綱張力增大,而漁船減速運動時則拖網曳綱張力減小。該試驗中起網時曳綱張力達到最大值208 kN,為了拖網絞車安全,此時,漁船減速航行。
2)由試驗測試結果顯示,采用張力自動控制系統穩定可靠,控制拖網絞車大部分時間處于恒張力狀態,即曳綱張力一定張力范圍波動,保證了拖網漁船安全生產。網口面積可以增大9.5%,有效改善了網口擴張,對于提高漁船作業效率具有實際意義。
[1] 賀波.世界漁業捕撈裝備技術現狀及發展趨勢[J].中國水產,2012,(5):43-45.
[2] 諶志新.我國漁船捕撈裝備的發展方向與重點[J].漁業現代化,2005,(4):3-4.
[3] 歐陽弋.曳綱張力監測及其監測儀的研制[J].漁業現代化,1992,19(4):27-29.
[4] 佘顯煒.拖網曳綱動力學問題的研究[J].浙江水產學院學報,1993,12(1):1-13.She Xianwei. A study on dynamic forces acting upon a trawl warp [J]. Journ al of Zhejia ng College of Fish eries,1993,12(1):1-13.(in Chinese with English abstract)
[5] Lee C W,Lee J H. M odeling of a m idwinter trawl system with r espect to the vert ical m oment [J]. Fisher ies Sci ence,2000,66(5):851-857.
[6] Sun Xiaofeng,Yin Yong,Jin Yicheng,et al. The modeling of single-boat,mid-water trawl systems for f ishing simulation [J]. Fisheries Science. 2011,109(1):7-15.
[7] Lee C W,Zhang C I,Shin H O. Sim plified tr awl system modeling and d esign of a d epth control s ystem using fuzzy logic [J]. Fisheries Research,2001,53(1):83-94.
[8] Weinberg K L,Somerton D A. Variation in trawl geometr y due to unequal warp length [J]. Fisher y Bulletin,2006,104(1):21-34.
[9] Murphy H M,Bungay T,Stern E W P,et al. Measurement of warp loads of bongo plankton samplers [J]. Fisheries Research,2015,162:43-46.
[10] Johan R K,Vegar J. Control struc ture for tra wl systems[C]. Lisbon,Portug al:7th Conf erence on Man euvering and Control of Marine Craft,IFAC,2006.
[11] Lee C W,Lee J H,Kim I J. Application of a fuzzy controller to depth control of a mid water trawl net [J]. Fisheries Science,2000,66(5):858-862.
[12] Trout G C. A deep-trawling w inch for can adian f isheries research [J]. Ocean Engineering,1972,2(3):117-122.
[13] Carral J,Carral L,Lamas M,et al. Fishing grounds’ influence on trawler winch design [J]. Ocean Engineering,2015,102:136-145.
[14] Wang Y D,Pan H. Stud yon constant tension winch with PDF controller applications in ocean engineering [J]. Advanced Materials Research,2013,830(8):101-107.
[15] Holmes P G,S mithson J G. Development of an improved electric trawl-winch control for stern trawlers [J]. Proceedings of the Institution of Electrical Engin eers-London,1968,115(7):1045-1055.
[16] Hystad P H. Device and a meth od for autotrawl operation:U.S. Patents 5351430[P]. 1994-10-4.
[17] Fuwa S,Ebata K,Kinoshita H,et al. New tr awling system equipped in Nansei Maru of Kagoshima U niversity [J],Fisheries Engineering,2005,42(1):29-38.
[18] Mitchell M R,Dessureault J G. A constant tension winch:design and t est of a s imple pas sive s ystem[J]. Ocean Engineering,1992,19(5):489-496.
[19] 徐志強,羊衍貴,王志勇,等.大型遠洋拖網漁船拖網被動補償系統的研究[J].船舶工程,2013,35(4):51-54.Xu Zhiqiang,Yang Yangui,Wang Zhiy ong,et al. Research on passive compensation system for trawlnet used in large ocean trawlers[J]. Ship Enginee ring,2013,35(4):51-54.(in Chinese with English abstract)
[20] 謝安桓,宋金威,喻峰,等.曳綱絞車液壓系統的設計及控制研究[J].液壓與氣動,2014,(10):11-16.Xie Anhuan,Song Jinwei,Yu Feng,et al. Design and control of th e h ydraulic s ystem of trawl win ches [J]. Chinese Hydraulics &Pneumatics,2014,(10):11-16.(in Chinese with English abstract)
[21] 宋金威.拖網漁船液壓系統研究[D].杭州:浙江大學,2014.Song Jinwei. Research on the Hydraulic System of Trawler [D]. Hangzhou:Zhejiang University,2014.(in Chinese with English abstract)
[22] 魏素芬,楊文林,張竺英.液壓絞車主動升沉補償控制研究[J].液壓與氣動,2009(7):27-28.Wei Sufen,Yang Wenlin,Zhang Zhuying. Research on the active h eave control of h ydraulic winch [J]. Chines e Hydraulics &Pneumatics,2009(7):27-28.(in Chinese with English abstract)
[23] 張超.海洋拖曳絞車液壓調速及張力波動抑制研究[D].杭州:浙江大學,2011.Zhang Ch ao. Research on Speed Control and Tension Fluctuation Sup pression of the Oceanog raphic H ydraulic Towing Win ch [D]. Hangzhou:Zh ejiang Univ ersity,2011.(in Chinese with English abstract)
[24] 王福山,王克文,周然,等. 液壓絞車復合控制技術[J].液壓與氣動,2012(6):43-45.Wang Fushan,Wang Kewen,Zhou Ran,et al. The technology of composite control for hydraulic winch [J]. Chinese Hydraulics &Pneumatics,2012(6):43-45.(in Chinese with English abstract)
[25] 毛建忠,朱康武,錢怡,等.基于工控機的鋼繩絞車張力速度控制系統[J]. 機械設計與制造,2008(5):91-92.Mao Jianzhong,Zhu Kangwu,Qian Yi,et al. Tension and velocity control s ystem for steel wire winch based on industrial computer [J]. Machinery Design &Manufacture,2008(5):91-92.(in Chinese with English abstract)
[26] 鄢華林,宋林. 恒張力絞車的應用研究[J].液壓與氣動,2011(7):80-82.Yan Hualin,So ng Lin. Applica tion research of winch with constant tension [J]. Chinese Hydraulics &Pneumatics,2011(7):80-82.(in Chinese with English abstract)
[27] 常晴晴,孫斌,高世陽.基于AMESim與SIMULINK的雙絞車恒張力控制研究[J].液壓與氣動,2011(10):107-110. Chang Qingq ing,Sun Bin,Gao Shiy ang. Con stant tension control of do uble winch es based on A MESim and SIMULINK [J]. Chinese Hydraulics &Pneumatics,2011(10):107-110.(in Chinese with English abstract)
[28] Kotwicki S,Weinberg K L,Somerton D A. The effect of auto trawl s ystems o n the P erformance of a s urvey trawl [J]. Fishery Bulletin,2006,104(1):35-45.
[29] 汪錦源.拖網絞車拉力分析探討[J].水產學報,1964,1(1):99-118.Wang Jinyuan. An analysis for the pull loads of trawl winch [J]. Journal of Fisheries of China,1964,1(1):99-118.(in Chinese with English abstract)
[30] Fujimori Y,Ch iba K,Oshim a T. Th e influence of warp length on trawl dimension and catch of walleye pollock theragra cha lcogramma in a bot tom tr awl s urvey [J]. Fisheries Science,2005,71(4):738-747.
[31] 江峰,陳愷愷.淺析船用被動式恒張力控制液壓絞車[J].液壓氣動與密封,2013(11):38-40.Jiang Feng,Chen Kaikai. Analysis of marine passive constant tension winch [J]. Hydraulics Pneumatics &Seals,2013(11):38-40.(in Chinese with English abstract)
Design and experiment of automatic tension control system for trawl winch on fishing boat
Wang Zhiyong1,2,Tang Taolin2,Xu Zhiqiang2,Ni Hanhua2
(1. Key Laboratory of Fishery Equipment and Engineering,Ministry of Agriculture,Shanghai 200092,China;2. Fishery Machinery and Instrument Research Institute,Chinese Academy of Fishery Science,Shanghai 200092,China)
Trawl winch is the most important equipment of t rawler fishing. In order to ensure safe dragging operations of fishing vessel equipment under the complex sea conditions as well as to realize the quick response and precise control of trawl winch,an d keep net sh ape goo d,in th is stud y,th e t rawl ten sion automatic co ntrol system was designed based on electro-hydraulic control technology. The systemmainly consisted of proportional directional valve,balance valve,overflow valve,pilot valve,oil pressure sensor,and electric control system. Through measured input and output pressure of motor,we calculated warp tension as the fee dback signal and usedPLC(programmable logic controller) to control the pressure of pilot relief valve,whichwas used to adjust the left and right warp tension and position,to maintain the dynamic balance of system as well as to keep the net s hape good. T he m an-machine interface and ope ration m ode of a utomatic tension c ontrol was developed bas ed on La bVIEW,of which i ts main f unction co nsisted of parameter set,in formation m anagement,syste m monitor an d data inqu ire. The system facilitated o perator m onitoring t he running state of th e various eq uipment,and management equipment operation. In order to verify the characteristic and practicability of tension control of th e system,application test w as carried on the East C hina Sea ar ea in 2015. The experiment continued about 4.5 hours,including three stages:shooting net,dragging net,and heaving net,which tested speed control and tension control performance of the system under the corresponding operating conditions,and measured relevant data su ch as sho ot depth,shoot length,shoot speed,heave speed,warp tension and winch working pressure. The test resultshowed that dragging stage was the longest,and in this process,the left warp and right warp were kept balance,warp tension was mainly affected by hydrodynamic,warp weight,and water resistance of fishing gear. Warp shoot length range was 350-490 m,warp tension range was 118 -148 kN,corresponding to the system pressure of 2.3-2.7 MPa,and the average trawling speed of fishing vessel was 5.6 kN. Although warp tension various with the shoot length and shoot depth change,the winch was in constant tension state at the most. Data showed that the system could adjust the warp tension well to en sure trawl warp tension maintained in a certain rang e through adjusting the speed of receiving or releasing net,which suppressed effectively the interference of the warp tension variation on the nets. In addition,experiment also recorded the chart of net shape by netsonde,calculated the net expansion parameter. It could be known that net mouth perimeter was equal before and after using the tension automatic control system by comparison data. The net mouth height and net mouth roundness increased and the net mouth area was expanded by 9.5% after using tension control system,which effectively adjusted the net mouth expansion and improving the fishing efficiency. During the different stage of experiment,the set pressure of overflow valve should be different correspondingly. At the beginning of shooting,the pressure value was small,which can maintain good net mouth shape and position. Due to net speed increased relative to water flow,warp tension was increased and the maximum value reached 208 kN. The set pressure of overflow valve should be large so that it could be used to effectively protect warp and net safety,provided a guarantee for the safe production of fishing vessel. The experiment process was basically consistent with the actual fishing conditions. We concluded that in the tension automatic control mode,the trawl winch can automatically adjust speed of heave and shoot according to the fishing vessel speed and water flow. Though the system could generate heat and result in power loss during uses,the warp tension control system still cab meet the requirements of warp speed and tension control in the different trawl condition.
fisheries;fishing vessels;control systems;trawl winch;warp tension;electro-hydraulic control;tension balance
10.11975/j.issn.1002-6819.2017.01.012
S981.9
A
1002-6819(2017)-01-0090-05
王志勇,湯濤林,徐志強,倪漢華. 漁船拖網絞車張力自動控制系統設計及試驗[J]. 農業工程學報,2017,33(1):90-94.doi:10.11975/j.issn.1002-6819.2017.01.012 http://www.tcsae.org
Wang Zhiyong,Tang Taolin,Xu Zhiqiang,Ni Hanhua. Design and experiment of automatic tension control system for trawl winch on fishing boat[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(1):90-94.(in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2017.01.012 http://www .tcsae.org
2016-06-28
2016-10-31
國家科技支撐計劃資助(2013BAD13B02)
王志勇,男,河南汝南人,副研究員,主要從事海洋漁業裝備研究。上海 中國水產科學研究院漁業機械儀器研究所,200092。Email:wzy279@sina.com