李 民,陳燁龍,龐建武,杜慧勇,徐 斌
(1. 河南科技大學車輛與交通工程學院,洛陽 471003;2. 廣西玉柴機器股份有限公司,玉林 537005)
消隙齒輪降低柴油機怠速噪聲的應用研究
李 民1,陳燁龍1,龐建武2,杜慧勇1,徐 斌1
(1. 河南科技大學車輛與交通工程學院,洛陽 471003;2. 廣西玉柴機器股份有限公司,玉林 537005)
柴油機噪聲影響著農業機械操作者的身心健康,該文為了解決某型柴油機在怠速工況下的異響噪聲問題,采用仿真與試驗相結合的方法進行研究。首先,通過聲強和聲壓測試確定了噪聲的主要產生部位;然后,基于Hypermesh和Abaqus軟件建立了曲軸及整機零部件的有限元模型,并通過模態試驗驗證了有限元模型的準確性,基于Excite軟件建立了配氣正時傳動系統和整機的多體動力學模型,發動機整機振動計算時考慮了缸內燃氣壓力、正時系統及配氣機構全閥系激勵和活塞敲擊激勵。多體動力學仿真結果表明:齒輪的反向敲擊出現時,齒輪工作面的接觸力消失,進排氣齒輪在背隙側發生接觸產生沖擊力,進而造成發動機在怠速時產生“噠噠”的異響噪聲;整機振動仿真結果表明:使用消隙齒輪可以消除進/排氣凸輪軸齒輪的反向敲擊,在1 000~2 500 Hz范圍內,使得齒輪室蓋和缸蓋罩的振動速度級降低了7 dB左右。最后在半消聲室的發動機臺架上,對有無消隙齒輪的柴油機進行了振動加速度、噪聲和聲品質的對比試驗,試驗表明:怠速工況下,使用消隙齒輪后,前端發出的“噠噠”異響噪聲消失,齒輪室蓋振動降幅很大,前端1 m噪聲聲壓級降低了5~9 dB(A),聲品質也有了明顯改善。因此,當內燃機其它齒輪傳動部位出現齒輪反向敲擊聲時,可考慮使用消隙齒輪予以解決。
柴油機;振動;齒輪;怠速工況;消隙齒輪;噪聲
怠速工況的噪聲大小及聲品質是柴油機的一個重要指標,如果系統設計不良,常會發出異響噪聲。怠速工況下柴油機的缸內燃燒壓力小,進、排氣流速慢,燃燒噪聲和空氣動力噪聲所占比例小,噪聲聲音一般來自于運動機件之間的相互敲擊碰撞[1],比如活塞敲擊、鏈條多邊形效應、齒輪嚙合碰撞、氣門落座敲擊等[2-5],此外空壓機的進氣噪聲有時在怠速也十分明顯[6]。
實際使用過程中,發動機敲擊噪聲產生的原因非常復雜,解決方案也各不相同。李帥通過優化氣門彈簧與凸輪型線,解決了凸輪飛脫和氣門落座力大的問題,從而降低了氣門落座的敲擊[7]。景國璽等通過調整配缸間隙、優化活塞型線降低了低轉速下的敲擊噪聲[8]。褚志剛等提出了在齒輪中嵌入高內阻材料、增加拖拽阻力、以及改善齒輪的支撐方式等措施來改善齒輪的異常噪聲[9]。
目前,國內外學者對齒輪的動力學特性及應用做了大量研究[10-16],關于消隙齒輪的研究主要集中于嚙合剛度的計算[17-18]、高頻傳動特性[19]以及傳動回差的計算與分析[20],消隙齒輪主要用于航天精密伺服機構[21]、精密機床[22]、雷達數據傳遞機構等一些伺服機電系統領域中[23],在內燃機噪聲、振動與聲振粗糙度(noise vibration harshness,NVH)領域的應用研究開展的還不系統與具體[24-25]。本文采用聲壓法和聲強法,確定了噪聲源的位置,并在進、排氣凸輪軸的傳動中采用消隙齒輪替代普通齒輪,降低了柴油機怠速噪聲。
1.1 噪聲源識別
首先采用工程9點法測量了怠速工況下柴油機不同方向的1 m聲壓級。測點分布示意圖如圖1,其中測點2代表排氣側、測點4代表前端、測點6代表進氣側、測點9代表頂面。結果見表1所示,前端的1 m聲壓級為75.9 dB(A),比其他測點高出5~10 dB(A),因此可判斷噪聲的主要來源在前端,排除了活塞敲擊和氣門落座敲擊的可能。
然后使用聲強探測儀對該柴油機進行了聲源識別,發現齒輪室蓋板和前端靠近曲軸位置的聲強較大,如圖2所示,采集頻率范圍為250 Hz~6.3 kHz,聲強級達到87 dB(A)。進一步對前端噪聲頻譜進行分析,發現在1~10 kHz頻率范圍內,噪聲聲壓級較大,峰值出現在2 kHz處,如圖3所示。

圖1 測點分布示意圖Fig.1 Measured points distribution sketch

表1 柴油機各測點聲壓級Table 1 Diesel engine SPL(sound pressure level) of different measurement points

圖2 前端原始聲強云圖Fig.2 Original sound intensity color map in front of engine

圖3 前端噪聲頻譜Fig.3 Noise spectrum in front of engine
1.2 前期采取的措施
為了降低柴油機前端的噪聲,前期采用以下的方法:齒輪室蓋板上使用隔聲罩進行局部屏蔽,對進、排氣凸輪軸的傳動齒輪采用磨齒,改善液壓張緊器的布置以及更換新的鏈條等一系列措施。但異響噪聲依然存在,噪聲應該來自齒輪傳動,原先進/排齒輪均為普通直齒輪,齒數43,模數2 mm,齒寬11 mm,壓力角24.376°,由于齒輪精度、安裝誤差等因素的影響,齒輪副必定存在一定的齒側間隙,加之發動機運行過程中凸輪軸受到負載扭矩波動和齒輪嚙合力徑向分量的影響,齒輪側隙也在不斷變化,它導致齒輪嚙合過程中產生相互敲擊。因此提出了在進氣凸輪軸上將原設計的普通齒輪改用消隙齒輪的措施。
該柴油機正時系統為鏈傳動,排氣凸輪軸與進氣凸輪軸之間采用齒輪傳動的方式,正時系統具體結構見圖4所示。

圖4 正時傳動系統Fig.4 Timing drive system
原設計采用普通齒輪傳動,改進方案在進氣凸輪軸采用消隙齒輪。消隙齒輪由2片齒組成,結構見圖5。較寬的齒輪固定在凸輪軸上,稱為固定輪,作用是傳遞動力;較窄的齒輪套在固定輪的輪轂上,稱為浮動輪,作用是消除齒側間隙。固定輪與浮動輪上各有一個銷釘,兩片齒輪中間通過扭簧與銷釘的配合產生一個預載扭矩,齒輪安裝在凸輪軸后擰下沉頭螺釘與另一齒輪嚙合,使固定輪的齒左側和浮動輪的齒右側分別緊貼在排氣凸輪軸前端齒輪的齒槽左、右兩側,通過這種錯齒結構能夠消除齒側間隙,避免嚙合過程中的碰撞[26-27]。齒輪主要參數見表2。

圖5 消隙齒輪結構示意圖Fig.5 Anti-backlash gear structure sketch

表2 齒輪副主要參數Table 2 Gear pair major parameters
不同參數的扭簧對消隙齒輪的動力學特性有很大影響,降噪效果也有差異,扭轉剛度大,齒輪磨損加劇;扭轉剛度小,消隙作用小,降噪效果差[28]。本文采用優化的扭簧進行試驗與仿真分析,扭轉剛度為67.45 N·m/rad,預緊狀態下扭簧壓縮角度為0.146 rad。
3.1 有限元模型的建立
使用Hypermesh軟件對曲軸和整機表面各零部件的三維模型進行了網格劃分,圖6是裝配后的整機有限元模型,各部分的單元及節點數如表3所示。與曲軸連接的飛輪和減震器采用六面體一階單元,曲軸及其它零部件均采用四面體二階單元。裝配后,總單元數量為928 237。

圖6 整機有限元模型Fig.6 Engine finite element modeling(FEM) model

表3 主要零部件有限元模型的單元及節點數Table 3 Main components element and node numbers of FEM model
模型建立后,使用Abaqus軟件對整機模型進行模態計算,為了驗證其準確性,與試驗結果進行對比。表4是模態計算與模態試驗前六階模態固有頻率的對比結果。從對比結果來看,誤差率均小于10%,說明有限元模型的建立是比較準確的,能夠滿足動力學的計算要求。之后對模型進行縮減,提取子結構,保留主節點的自由度、質量、剛度等信息,為動力學的計算做好基礎。
3.2 多體動力學模型的建立
使用AVL-EXCITE軟件的Power Unit模塊建立了整機的動力學模型,建好的模型如圖7。

圖7 整機多體動力學模型Fig.7 Engine multi-body dynamics model
仿真時施加的激勵主要有:燃氣壓力、正時鏈條、正時齒輪對機體的激勵力,配氣機構閥系激勵和活塞敲擊缸套激勵力。缸內壓力通過臺架試驗實際測量得到;活塞敲擊激勵在Piston&Rings模塊中計算獲得;正時系統及閥系的激勵則通過Timing Drive模塊獲得。其中,正時齒輪激勵區分普通齒輪副模型和消隙齒輪副模型進行計算。將得到的齒輪激勵加載到整機模型中,計算得到整機的振動數據。
4.1 齒輪嚙合力
當進、排氣凸輪軸均采用普通直齒輪進行傳動時,由于齒側間隙的存在以及凸輪軸扭矩波動的作用,齒輪嚙合過程不可避免的發生相互碰撞,產生高頻激勵,繼而發出噪聲。而消隙齒輪則能夠補償齒側間隙,對齒輪的反向沖擊起到緩沖作用,避免反向敲擊的情況,圖8則是齒輪嚙合力對比。從圖8中可以看出,普通齒輪嚙合時,在一個循環周期內,背隙側嚙合力出現了4次,而且在背隙側齒輪接觸的瞬間產生了敲擊力,幅值將近400 N。而排氣凸輪軸齒輪與消隙齒輪嚙合時,背隙側沒有嚙合力產生,也就不會發生齒輪相互碰撞的現象。

圖8 齒輪背隙側嚙合力的對比Fig.8 Comparison of meshing force on backlash side of gear
4.2 振動速度結果分析
對于動力學的計算結果,可以通過振動速度級的大小來評價噪聲的強弱[29]。圖9是計算的中心頻率為1 600 Hz的整機表面振動速度云圖,圖9a中速度分布與圖2的聲強云圖大體一致,說明軟件仿真預測的主要噪聲源位置與結果聲強試驗測試確定的主要噪聲源基本吻合,仿真結果可信。圖9b中可以看出使用消隙齒輪后,柴油機齒輪室蓋板、缸蓋罩等表面零部件的振動速度級均有一定的降低,減振、降噪效果顯著。

圖9 1 600 Hz整機表面振動速度云圖對比Fig.9 Comparison of vibration velocity in engine surface at 1 600 Hz
圖10是進氣凸輪軸前端采用消隙齒輪前后,齒輪室蓋板和缸蓋罩在其主振動方向上振動速度級對比。齒輪嚙合激勵的高頻部分是激發發動機表面噪聲輻射的主要原因,因此,重點關注1 000~4 000 Hz頻段內的振動結果[30]。從頻域內的對比可知,在中心頻率為2 000 Hz的頻段內,齒輪室蓋板的振動速度級達到峰值,大小為82.4 dB,而缸蓋罩的振動速度級峰值出現在中心頻率為1 600 Hz的頻段內,大小為70.3 dB。采用消隙齒輪后,在1 000~2 500 Hz頻段內,齒輪室蓋板和缸蓋罩的振動速度級均有一定幅度的下降,1 778~2 339 Hz頻段內,齒輪室蓋速度級降至75.1dB;1 413~1 778 Hz頻段內,缸蓋罩速度級降至63.6 dB,兩者降幅在7 dB左右。

圖10 振動速度級對比Fig.10 Comparison of vibration velocity level
5.1 齒輪室蓋振動結果分析
在試驗臺架上,測量了齒輪室蓋板的振動加速度。從圖11中可以看出,在曲軸兩轉(一個工作循環)周期內,采用消隙齒輪前,加速度有8個峰值,且最大幅值達到120 m/s2;采用消隙齒輪后,加速度峰值減少為4個,且幅值也大幅下降,除1缸活塞上止點附近由于爆發壓力的作用使得加速度幅值達到50 m/s2外,其它位置的振動加速度均不超過20 m/s2。進一步與圖8的背隙側齒輪嚙合力對比還可以看出,消失的4個峰值的時刻正好與普通齒輪嚙合力產生的位置相同,因此,齒輪的反向敲擊是導致齒輪室蓋振動加強的原因。

圖11 齒輪室蓋振動加速度對比Fig.11 Comparison of vibration acceleration of gear chamber cover
5.2 聲壓級與聲品質結果分析
在半消聲室中,分別對原機(未采用消隙齒輪)和新機(采用消隙齒輪)進行了怠速工況下的噪聲測量試驗,同時,使用模擬人工頭對聲品質進行了測量,人工頭的布置位置如圖1所示,測量的結果見表5和表6。

表5 聲壓級對比Table 5 Comparison of SPL

表6 聲品質對比Table 6 Comparison of sound quality
從表5可以看出,原機的前端噪聲聲壓級比其它幾個測點高出4~6 dB(A),采用消隙齒輪后,前端、進氣側、排氣側和頂面的噪聲聲壓級均有所降低,降幅在5~9 dB(A),且前端的降幅最大。從表6可以看出,無論在進氣側還是排氣側,采用消隙齒輪后,響度、尖銳度和粗糙度均有所下降。從人的主觀評價來說,使用消隙齒輪后,發動機聲音品質有極大的改善,原來強烈尖銳的敲擊聲已經不再存在,總體聲音變得柔和舒服。
圖12是采用消隙齒輪前后,發動機前端和頂面在頻域下的噪聲聲壓級對比結果。從圖12中可以看出,在中頻和低頻范圍內兩者差異不是很明顯,但在高頻范圍內,采用消隙齒輪后,噪聲聲壓級有大幅的降低,幅值降低了10 dB(A)左右。因此,采用消隙齒輪可以避免齒輪的往復沖擊,有效地降低齒輪傳動中的高頻噪聲。

圖12 噪聲聲壓級對比Fig.12 Comparison of SPL
5.3 前端聲強結果分析
采用消隙齒輪后,再次對前端進行聲強探測,采集頻率同樣為250 Hz~6.3 kHz,得到聲強云圖如圖13所示,通過與圖2進行對比可以看出齒輪室蓋板位置的聲強大大減弱,已不再是主要的噪聲源。

圖13 前端使用消隙齒輪后聲強云圖Fig.13 Sound intensity color map in front of engine by using anti-backlash gear
1)該柴油機怠速工況下發出“噠噠”異響噪聲源于進/排氣凸輪軸嚙合時的齒輪反向敲擊力,該激勵力通過進、排氣凸輪軸傳遞到軸承座,造成前端齒輪室蓋局部振動速度大,產生異常噪聲。
2)采用消隙齒輪后,消除了進/排氣凸輪軸之間齒輪的反向敲擊,原先發動機前端“噠噠”的異響噪聲也消失了,能使發動機前端1 m噪聲的聲壓級降低5~9 dB(A),發動機的聲品質有明顯改善。當內燃機其它齒輪傳動部位出現齒輪反向敲擊聲時,可考慮使用消隙齒輪予以解決。
[1] 龐劍.汽車噪聲與振動-理論與應用[M].北京:北京理工大學出版社,2006:162-171.
[2] 杜燦誼,喻菲菲,曾祥坤.發動機活塞敲擊故障仿真與診斷分析[J].車用發動機,2013(2):79-84.Du Canyi,Yu Feifei,Zeng Xiangkun. Simulation and diagnosis of engine piston knocking fault[J]. Vehicle Engine,2013(2):79-84.(in Chinese with English abstract)
[3] 李一民,郝志勇,張志明,等.汽油機正時鏈傳動動力學仿真研究[J].內燃機工程,2013,34(1):81-87.Li Yimin,Hao Zhiyong,Zhang Zhiming,et al. Simulation research on dynamic characteristic of timing chain trains of gasoline engine[J]. Chinese Internal Combustion Engine Engineering,2013,34(1):81-87.(in Chinese with English abstract)
[4] George B,Douglas F. A multi-variable experimental study of diesel gear train rattle[J]. SAE Technical Paper,doi:10. 4271/2011-01-1561.
[5] 舒歌群,馬維忍,梁興雨,等.柴油機配氣機構多體動力學的仿真研究[J].機械設計,2009,26(3):49-52.Shu Gequn,Ma Weiren,Liang Yuxing,et al. Simulative study on multi-bodied dynamics of valve gear of diesel engine[J]. Journal of Machine Design,2009,26(3):49-52.(in Chinese with English abstract)
[6] 褚志剛,鄧兆祥,王亮,等.中型載貨汽車怠速異響噪聲源識別[J].振動與沖擊,2009,28(3):171-173.Chu Zhigang,Deng Zhaoxiang,Wang Liang,et al. Idle abnormal noise source identification for a multi-duty truck[J]. Journal of Vibration and Shock,2009,28(3):171-173.(in Chinese with English abstract)
[7] 李帥.發動機配氣機構振動噪聲研究[D].長沙:湖南大學,2012.Li Shuai. Research on Vibration and Noise of Engine Valve Train[J]. Changsha:Hunan University,2012.(in Chinese with English abstract)
[8] 景國璽,郝志勇,金陽,等.發動機燃燒噪聲和活塞拍擊噪聲的產生機理實驗研究[J].振動工程學報,2010,23(6):655-659.
[9] 褚志剛,鄧兆祥,胡玉梅,等.SC6350C汽車變速器噪聲控制[J].中國機械工程,2005,16(16):1481-1485.Chu Zhigang,Deng Zhaoxiang,Hu Yumei,et al. Noise control for SC6350C vehicle transmission[J]. China MechanicalEngineering,2005,16(16):1481-1485.(in Chinese with English abstract)
[10] 李一民,郝志勇,葉慧飛.柴油機正時齒輪系動力學特性分析[J].浙江大學學報:工學版,2012,46(8):1472-1477.Li Yimin,Hao Zhiyong,Ye Huifei. Dynamic characteristic analysis of diesel timing gear trains[J]. Journal of Zhejiang University:Engineering Science,2012,46(8):1472-1477.(in Chinese with English a bstract)
[11] 張鎖懷,沈允文,董海軍,等.齒輪拍擊系統的動力響應[J].振動工程學報,2003,16(1):62-66.Zhang Suohuai,Shen Yunwen,Dong Haijun,et al. Dynamic response of a gear rattling system[J]. Journal of Vibration Engineering,2003,16(1):62-66.(in Chinese with English abstract)
[12] 董海軍,沈允文,劉夢軍,等.齒輪系統Rattling動力學行為研究[J].機械工程學報,2004,40(1):136-141.Dong Haijun,Shen Yunwen,Liu Mengjun et al. Research on the dynamical behaviors of rattling in gear system[J]. Chinese Journal of Mechanical Engineering,2004,40(1):136-141.(in Chinese with English abstract)
[13] 楊軍.齒輪系統輪齒嚙合過程的動力學分析[J].機械傳動,2011,35(8):29-34.Yang Jun. Dynamics analysis of tooth meshing process of gear system[J]. Journal of Mechanical,2011,35(8):29-34.(in Chinese with English abstract)
[14] 張發民.基于ANSYS/LS-DYNA的齒輪傳動沖擊特性仿真分析[J].機械傳動,2011,35(9):9-11.Zhang Famin. Simulation analysis of gear transmission impact characteristic based on ANSYS/LS-DYNA[J]. Journal of Mechanical,2011,35(9):9-11.(in Chinese with English abstract)
[15] 李三群,賈長治,武彩崗,等.基于虛擬樣機技術的齒輪嚙合動力學仿真研究[J].系統仿真學報,2007,19(4):901-904.Li Sanqun,Jia Changzhi,Wu Caigang,et al. Dynamic simulation study of gear meshing based on virtual prototyping technology[J]. Journal of System Simulation,2007,19(4):901-904.(in Chinese with English abstract)
[16] Shim S B,Park Y J,Kim K U. Reduction of PTO rattle noise of an agricultural tractor using an anti-backlash gear[J]. Biosystems Engineering,2008,33(5):346-354.
[17] Yang Z,Shang J Z,Luo Z R. Effect analysis of friction and damping on anti-backlash gear based on dynamics model with time-varying mesh stiffness[J]. Journal of Central South University,2013,20(12):3461-3470.
[18] 楊政,尚建忠,羅自榮,等.扭簧加載雙片齒輪消隙機構綜合嚙合剛度[J].機械工程學報,2013,49(1):23-30.Yang Zheng,Shang Jianzhong,Luo Zirong,et al. Research on synthesis meshing stiffness of torsional spring-loaded double-gear anti-backlash mechanism[J]. Journal of Mechanical Engineering,2013,49(1):23-30.(in Chinese with English abstract)
[19] 李雄峰,郝衛生,張兆凱,等.消隙齒輪傳動建模與分析研究[J].戰術導彈控制技術,2013,30(2):42-47.Li Xiongfeng,Hao Weisheng,Zhang Zhaokai,et al. Modeling and analysis of anti-backlash gear transmission [J]. Control Technology of Tactical Missile,2013,30(2):42-47.(in Chinese with English abstract)
[20] 謝鋒,唐巍.消隙齒輪傳動機構回差分析與計算[J].機械管理開發,2013(1):28-31.Xie Feng,Tang Wei. Analysis and calculation of spring eliminating clearances gear drive structure[J]. Mechanical Management and Development,2013(1):28-31.(in Chinese with English abstract)
[21] 廖洪波,范大鵬,范世珣.消隙齒輪伺服系統動力學建模與頻率特性研究[J].航空學報,2015,36(3):987-994.Liao Hongbo,Fan Dapeng,Fan Shixun. Research on the dynamics and frequency response characteristic of the anti-backlash gear servo system[J]. Acta Aeronautica et Astronautica Sinica,2015,36(3):987-994.(in Chinese with English abstract)
[22] 鐘文斌,田貴磊,肖圣龍.雙齒輪消隙結構的研制與分析[J].機械設計與制造,2014(1):105-107.Zhong Wenbin,Tian Guilei,Xiao Shenglong. A research and analysis on one structure of double gear anti-backlash[J]. Machinery Design &Manufacture,2014(1):105-107.(in Chinese with English abstract)
[23] 胡超,施滸立,寧春林.齒輪消隙功能實現探索[J].機電工程,2008,25(2):11-14.Hu Chao,Shi Huli,Ning ChunLin. Research on functional implementation of gear clearance eliminating[J]. Mechanical &Electrical Engineering Magazine,2008,25(2):11-14.(in Chinese with English abstract)
[24] Jeffrey C H,Kwin R A. Cummins 4B noise reduction anti-backlash camshaft gear[J]. SAE Technical Paper,doi:10.4271/1999-01-1761.
[25] 董懿瓊,楊雪春.無間隙齒輪在汽車發動機降噪中的應用嘗試[J].南昌大學學報:工科版,2006,28(3):250-255.Dong Yiqiong,Yang Xuechun. Experimental application of gapless gear pairs to noise reduction of an automobile engine[J]. Journal of Nanchang University:Engineering &Technology,2006,28(3):250-255.(in Chinese with English abstract)
[26] Rodney G,Mark P,Mandar M.Gear design for low whine noise in a supercharger application[J].SAE Technical Paper,doi:10.4271/2007-01-2293.
[27] Yashodhan V J,Jordan E K. Gear train mesh efficiency study:The effects of an anti-backlash gear[J]. SAE Technical Paper,doi:10.4271/2014-01-1769.
[28] 李民,陳燁龍,龐建武,等.柴油機雙頂置凸輪軸消隙齒輪動力學特性研究[J].內燃機工程,2016,37(4):247-252.Li Min,Chen Yelong,Pang Jianwu,et al. Study on dynamic characteristics of anti-backlash gear of a DHOC diesel engine[J]. Chinese Internal Combustion Engine Engineering,2016,37(4):247-252.(in Chinese with English abstract)
[29] 張俊紅,鄭勇.內燃機振動、噪聲的多體動力學分析[J].中國機械工程,2006,17(1):25-28.Zhang Junhong,Zheng Yong. Multi-body dynamics analysis of internal combustion engine vibration and noise[J]. China Mechanical Engineering,2006,17(1):25-28.(in Chinese with English abstract)
[30] 舒歌群,馬維忍,梁興雨,等.柴油機薄壁件表面輻射噪聲的研究[J].內燃機工程,2009,30(2):25-29.Shu Gequn,Ma Weiren,Liang Yuxing,et al. Radiation noise of external thin-wall components in diesel engine[J]. Chinese Internal Combustion Engine Engineering,2009,30(2):25-29.(in Chinese with English abstract)
Application on reducing idle noise of diesel engine by using anti-backlash gear
Li Min1,Chen Yelong1,Pang Jianwu2,Du Huiyong1,Xu Bin1
(1. Vehicle &Transportation Engineering School,Henan University of Science and Technology,Luoyang 471003,China;2. Guangxi Yuchai Diesel Engine Co.,LTD,Yulin 537005,China)
Dieselengine noise has a bad influence on physical and mental health of agricultural machinery operators. In this paper,we aimed at eliminating the abnormal rattling noise of a diesel engine running at idle speed condition by simulation and experiment. Firstly,on engine test bench in a semi-anechoic room,the rattling noise was identified through sound intensity and sound pressure measurement,the nine point sound pressure results showed that the rattling noise was more obvious in front of the engine,and the sound intensity of the engine front part showed that the main part of rattling noise was generated from the timing gear cover in front of intake camshaft and exhaust camshaft. In order to eliminating the abnormal rattling noise,some improvements were also attempted,such as using acoustic shield over intake camshaft and exhaust camshaft,improving the accuracy of timing gears through gear grinding,optimizing the parameters of valve-chain hydraulic tension device,replacing new timing chain,but the experiments showed all these improvements had no effect in noise reduction. Through analyzing of the previous experimental results,a hypothesis was proposed that the idle abnormal noise might be caused by the knock between the intake cam gear and exhaust cam gear,thus replacing intake cam normal gear by anti-backlash gear might eliminating the gear knock,and the diesel abnormal idle noise might be solved. Secondly,in order to identify if the gears knock really happened,multi-body dynamic simulation was performed. By using Hypermesh and Abaqus software,the FEM(finite element modeling) model of the engine including crankshaft,cylinder block,cylinder head and other engine components were built,and the model tests of each part were performed. The results showed that the frequency difference between experiment and simulation was within 10%,the accuracy of the FEM model was acceptable. By using Excite software,the multi-body dynamics model including the gear of the intake camshaft were built separately,and the multi-body dynamics model of the valve timing system and the vibration model of the engine were also built. During the vibration simulation,the exciting forces including cylinder pressure,valve timing system,valve exciting force,and piston slap force were considered. The engage force and vibration velocity with/without using anti-backlash gear were also compared. The valve timing system simulation results showed that when diesel engine with normal gear was running at idle speed,the gears reversed slap was occurred between the intake cam gear and exhaust cam gear.The moment when reversed slap of timing gear occurred,the contract force on the work side was eliminated,and the contract force on the backlash side appeared.So the idle speed abnormal rattling noise was excited by the reversed slap between intake camshaft gear and exhaust camshaft gear was validated. Anti-backlash gear can eliminate the reversed slap of valve timing gear,the vibration simulation results also showed that the vibration velocity of gear chamber cover and cylinder head cover was 7 dB lower in the frequency range of 1 000 Hz to 2 500 Hz when anti-backlash gear was used,especially at 1 600 Hz,the vibration amplitude was reduced more obviously. Finally,the diesel engine with/without anti-backlash gear was tested on bench in a semi-anechoic room. The engine bench vibration test results showed that the idling vibration acceleration of gear chamber cover was reduced from 120 m/s2to 50 m/s2and the acceleration peaks were reduced from 8 to 4,the moments of disappeared acceleration peaks while using anti-backlash gear met the disappearing moments of the engage force on the backlash side which was calculated by simulation exactly. The 1m SPL and sound quality were measured by engineering nine points method and KEMAR(knowles electronics manikin for acoustic)artificial head,and the noise test results showed:when anti-backlash gear was used,the abnormal rattling noise disappeared and the 1m SPL in front of engine was 5-9 dB(A) reduced,especially in the high frequency range. The KEMAR artificial head test results also showed that the sound quality of the diesel engine was improved obviously. In conclusion,anti-backlash gear can be used in other noisy mechanical transmission parts.
diesel engine;vibrations;gears;idle condition;anti-backlash gear;noise
10.11975/j.issn.1002-6819.2017.01.008
TK42
A
1002-6819(2017)-01-0063-07
李 民,陳燁龍,龐建武,杜慧勇,徐 斌. 消隙齒輪降低柴油機怠速噪聲的應用研究[J]. 農業工程學報,2017,33(1):63-69.
10.11975/j.issn.1002-6819.2017.01.008 http://www.tcsae.org
Li Min,Chen Yelong,Pang Jianwu,Du Huiyong,Xu Bin. Application on reducing idle noise of diesel engine by using anti-backlash gear[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(1):63-69.(in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2017.01.008 http://www.tcsae.org
2016-04-23
2016-10-27
國家重點研發計劃項目(2016YFD0700701)
李 民,男,河南洛陽人,博士,副教授,碩士生導師,主要從事內燃機現代設計方法及內燃機振動噪聲控制技術研究。洛陽 河南科技大學車輛與交通工程學院,471003。Email:limin@haust.edu.cn