黃 嫄,王曉春
·綜 述·
Zeste基因增強子同源物基因2與腫瘤發(fā)展的研究進展
黃 嫄,王曉春
多聚梳抑制復合體2作為一種表觀遺傳調節(jié)因子可選擇性催化組蛋白H3第27位賴氨酸三甲基化,從而誘導靶基因轉錄抑制。Zeste基因增強子同源物2(enhancer of zeste homolog 2,EZH2)是多聚梳抑制復合體2中具有酶活性的亞基,在腫瘤觸發(fā)、進展、轉移及耐藥性方面有重要作用。EZH2與其他表觀遺傳修飾酶相互協(xié)調介導基因沉默,EZH2超表達是多種實體腫瘤晚期和轉移性的標志,EZH2的表達與活性受多種腫瘤相關轉錄因子的調節(jié),各位點氨基酸殘基的磷酸化狀態(tài)可影響EZH2的催化活性,EZH2基因突變在血液系統(tǒng)惡性腫瘤中頻繁發(fā)生,除通過經典作用即催化抑癌基因啟動子區(qū)組蛋白H3第27位賴氨酸甲基化來抑制轉錄外,EZH2還具有誘導基因活化功能。因此,EZH2成為腫瘤治療的一個理想靶點,其特異性抑制劑EPZ6438正處于臨床Ⅰ/Ⅱ期試驗階段。
Zeste基因增強子同源物2;多聚梳抑制復合體2;腫瘤;轉錄抑制;基因活化
在真核生物中,組蛋白的轉錄后修飾在調節(jié)染色質結構和基因表達過程中有重要作用。這種表觀遺傳改變與遺傳學改變是有區(qū)別的,一旦發(fā)生遺傳學改變,DNA序列通常無法恢復正常,而表觀遺傳改變則可被特異性抑制劑逆轉。由于表觀遺傳異常在人類腫瘤中很常見,并且在腫瘤進展中有重要作用,因此對表觀遺傳改變的研究有利于對藥物開發(fā)和腫瘤治療[1]。
Zeste基因增強子同源物2(enhancer of zeste homolog 2,EZH2)是多聚梳群基因家族成員之一,EZH2蛋白在胚胎發(fā)育早期普遍表達,具有維持基因轉錄抑制的作用。EZH2對細胞增殖也是必需的,其高表達導致細胞進入S期。除了維持胚胎正常發(fā)育作用之外,EZH2在衰老細胞中低表達,p53基因通過下調EZH2的表達而使細胞發(fā)生復制性衰老。EZH2還能增強原代細胞的生長能力,在多種原發(fā)性腫瘤中超表達。研究顯示,EZH2在腫瘤觸發(fā)、進展、轉移及耐藥性方面有重要作用[2]。因此,EZH2成為潛在的抗腫瘤藥物作用的靶點。作者對當前EZH2的致瘤作用,EZH2蛋白表達與活性的調節(jié)機制,EZH2與癌基因信號轉導通路新進展以及EZH2靶向治療及其發(fā)展?jié)摿ψ饕痪C述。
人類EZH2基因定位于染色體7q35,全長近40 kb,含20個外顯子,外顯子長度從41~323 bp不等,內含子長度從150~17 700 bp不等[3],編碼一個由746個氨基酸殘基組成的組蛋白賴氨酸甲基轉移酶家族蛋白。EZH2蛋白主要的功能性結構域有CXC結構域(富含半胱氨酸結構域)、SET結構域(suvar3-9,enhancer of zeste,trithorax)、非編碼RNA結合結構域。其中外顯子17~20編碼高度保守的SET結構域,EZH2介導的轉錄抑制依賴完整的SET結構域[4]。當甲基供體和底物進入SET結構域的側面時,甲基供體與底物結合并將甲基基團轉移至底物上,轉移后與SET結構域分離以便結合下一個甲基供體,故EZH2催化3個連續(xù)的甲基化反應,分別形成單甲基化、二甲基化和三甲基化組蛋白H3第2位賴氨酸(histone H3 at lysine2,H3K2)[5]。
多聚梳抑制復合體2(polycomb repressive complex 2,PRC2)作為重要的染色質修飾因子,在所有生物體(無論植物、果蠅還是人類)中都是保守的[6]。人類PRC2包含EZH2、胚胎外胚層發(fā)育蛋白(embryonic ectoderm development,EED)和Zeste基因抑制子基因12(suppressorof Zeste12,SUZ12)3個核心亞基。WD40-重復蛋白EED與EZH2的N末端殘基相互作用,含有鋅指結構的SUZ12則介導EZH2與核小體的結合,其中任何一個核心亞基發(fā)生突變將影響EZH2的穩(wěn)定性與催化活性[7-8]。研究顯示,EZH2、DNA甲基轉移酶(DNA methyltransferases,DNMTs)[9]與組蛋白去乙酰化酶(histone deacetylases,HDACs)[10-11]三者在結構和功能上都有聯(lián)系。如圖1[1],PRC2催化組蛋白H3第27位賴氨酸三甲基化(trimethylatedhistone H3 lysine 27,H3K27me3)并沉默靶基因,但若K27處于乙酰化狀態(tài),則需要HDACs先將組蛋白去乙酰化。HDACs通過對H3K27以及其他賴氨酸殘基包括H3K29、H3K14和H4K8去乙酰化,使賴氨酸側鏈的ε-氨基基團暴露,易于被PRC2甲基化。在細胞分化過程中,需甲基化標志的基因先招募PRC2至啟動子區(qū),隨后DNMTs催化該基因CpG島發(fā)生超甲基化,使靶基因染色質永久沉默。因此,PRC2可以與HDACs協(xié)同改變組蛋白標志,使之從乙酰化修飾轉為甲基化修飾,PRC2也能招募DNMTs使染色質更致密。在結腸癌、前列腺癌、肝癌、肺癌、卵巢癌和乳腺癌中均發(fā)現EZH2、DNMTs和HDACs三者功能相關聯(lián)[12]。

圖1 表觀遺傳沉默酶協(xié)作模式
EZH2在多種腫瘤中超表達。實體瘤中EZH2超表達與腫瘤侵襲性、轉移及不良預后有關[12-16]。調節(jié)EZH2表達的轉錄因子在細胞增殖、腫瘤形成和干細胞低分化狀態(tài)維持等過程中有重要作用。如前列腺癌中,Myc基因與EZH2啟動子結合并直接激活轉錄,且EZH2的表達水平與Myc的表達水平呈正相關[17]。而在惡性膠質瘤腫瘤干細胞中,c-Myc表達反過來受到EZH2的正調節(jié),內在機制尚不清楚[17]。除Myc之外,另一個細胞周期調節(jié)因子E2F也正調節(jié)EZH2轉錄[18-19];反之,EZH2對pRb-E2F通路也有重要調節(jié)作用。在乳腺癌和前列腺癌中[16,20],ANCCA(AAA+nuclear coregulator cancer associated),一種包含溴結構域的三磷酸腺苷酶、E2F的結合蛋白,可增強E2F誘導的EZH2轉錄。
磷酸化狀態(tài)可改變EZH2的催化活性與穩(wěn)定性。Cha等[21]報道,EZH2蛋白具有一個高度保守的蛋白激酶B磷酸化位點——第21位絲氨酸(serine 21,S21)。蛋白激酶B催化EZH2 S21磷酸化,該位點磷酸化后EZH2對組蛋白H3的親和力降低,導致H3K27me3減少,基因轉錄去抑制。S21磷酸化對EZH2的H3K27me3非依賴性功能至關重要[21]。在雄激素非依賴性前列腺癌細胞中,pS21 EZH2是雄激素受體的轉錄共激活因子,對雄激素非依賴性生長有重要作用[22]。酪氨酸激酶磷酸化EZH2第641位酪氨酸(tyrosine 641,Y641),該位點磷酸化后EZH2與β-轉導重復相容蛋白的相互作用增強,誘導EZH2蛋白降解[23]。細胞周期蛋白依賴性激酶(cyclin-dependent kinase,CDK)1/2磷酸化EZH2的多個蘇氨酸位點,包括第345位蘇氨酸(threonine 345,T345)、T416和T487[24-26]。CDK介導的EZH2磷酸化位點與效應具有多樣性,因細胞類型與細胞狀態(tài)而異。T345磷酸化可促進EZH2和HOTAIR基因相互作用,而T416磷酸化則誘導核抑制蛋白磷酸酶1與EZH2結合,核抑制蛋白磷酸酶1可抑制蛋白磷酸酶1對EZH2的去磷酸化作用。T345和T416磷酸化均對EZH2招募至特異性靶基因座至關重要[24,26]。CDK1磷酸化 T487,誘導 EZH2從PRC2解離,導致EZH2失活、腫瘤細胞的浸潤性降低[25]。與之相反,T345磷酸化則促進細胞遷移與增殖[27]。EZH2的 T345和 T487磷酸化后,誘導EZH2發(fā)生泛素化,蛋白質降解[28]。
2010 年,腫瘤基因組測序確定了EZH2雜合型體細胞錯義突變在濾泡性淋巴瘤中發(fā)生率為7%,而在生發(fā)中心B細胞型彌漫性大B細胞淋巴瘤中發(fā)生率高達22%[29]。突變分別位于EZH2的SET結構域第641位酪氨酸(Y641N、F、S或H)、第677位丙氨酸突變?yōu)楦拾彼?alanine 677 glycin,A677G)和第687位丙氨酸突變?yōu)槔i氨酸(alanine 687 valine,A687V)[29-31]。與EZH2超表達不同,EZH2基因突變導致H3K27me3豐度在全基因組范圍內顯著上升[32]。此種功能獲得性突變的原理是:野生型EZH2催化H3K27單甲基化的活性較強,但其在后續(xù)的二甲基化、三甲基化反應中催化活性較弱;與之相反,Y641突變后EZH2修飾未甲基化組蛋白的能力減弱,而修飾單甲基化、二甲基化組蛋白的能力增強[29,33]。因此,在雜合型突變中,EZH2催化3次甲基化的能力均增強。A687V與Y641突變效果類似,而發(fā)生A677G突變的EZH2催化組蛋白3次甲基化的能力都增強[30-31]。在B細胞發(fā)育過程中,EZH2在生發(fā)中心細胞內表達并建立一個抑制性二價基因座特異性染色質環(huán)境,使細胞周期檢查點與分化因子基因沉默,B細胞生長分裂;B細胞成熟后,EZH2失活,細胞周期檢查點與分化因子基因重新活化,B細胞離開生發(fā)中心,分化為漿細胞并停止分裂。在生發(fā)中心的B細胞若發(fā)生Y641突變,H3K27三甲基化增強,導致EZH2靶基因的沉默放大,B細胞分化阻滯,細胞增殖增強,促進腫瘤形成[33]。
與在淋巴瘤中的情況相反,在T細胞型急性淋巴細胞白血病與髓系惡性腫瘤中,EZH2基因發(fā)生了一系列錯義突變、無義突變和框移突變[34-36]。這些基因改變常常是純合性的,分布在整個基因范圍內,通常會導致EZH2失去組蛋白甲基轉移酶活性。因此,含有EZH2基因失活突變的細胞系內H3K27me3水平整體下降。在T細胞型急性淋巴細胞白血病中,PRC2通常與該病的主要驅動因子NOTCH1基因競爭特異性靶基因,EZH2發(fā)生失活性突變后間接促進了NOTCH1驅動的癌基因活化[36]。在髓樣腫瘤中,EZH2基因突變在骨髓增生異常綜合征與骨髓增生性腫瘤中更常見,與不良轉歸有關,而在急性粒細胞性白血病中罕見[34,37-39]。在裸鼠模型中發(fā)現,EZH2發(fā)生失活性突變后導致H3K27me3銳減,癌基因如Hmga2、Pbx3、Lmo1和Myc靶基因轉錄抑制,導致骨髓增生異常綜合征或骨髓增生性腫瘤樣表型[40]。
EZH2突變對H3K27me3的影響截然不同,說明EZH2的靶基因因組織類型而異,同時顯示出組蛋白標志的平衡對細胞內穩(wěn)態(tài)的重要性。此外,盡管抑制EZH2在淋巴瘤中具有治療作用,在其他類型細胞中卻可能是有害的,所以在開展此種表觀遺傳治療之前應進行綜合性臨床前機制的研究。
EZH2在腫瘤細胞增殖、遷移、浸潤和上皮間質轉化中有重要作用,這些過程都與腫瘤發(fā)生、進展和轉移有關。更重要的是,EZH2與干細胞尤其是腫瘤干細胞特性和腫瘤起始細胞功能密切相關。到目前為止,已經發(fā)現了多種EZH2靶基因,其中大部分是抑癌基因。子宮內膜癌中,抑癌基因APC受EZH2的調節(jié):YY1基因招募EZH2至APC啟動子,EZH2三甲基化啟動子區(qū)H3K27導致APC表觀沉默[41]。另一個靶基因是p57,在卵巢癌中,抑制EZH2可上調p57的表達水平,降低卵巢癌細胞的增殖和轉移能力[15]。CDK抑制因子1C編碼腫瘤抑制蛋白p57KIP2。在多種乳腺癌細胞系,CDK抑制因子表達減少與EZH2超表達及H3K27me3增加有關。跨膜受體E-鈣黏蛋白維持上皮細胞的黏附性和完整性,其下調可增強腫瘤的侵襲性。EZH2可抑制E-鈣黏蛋白的表達,從而導致乳腺癌、胰腺癌、前列腺癌及卵巢癌的浸潤與轉移[42-43]。
除基因抑制功能外,研究顯示EZH2也有基因活化的功能[22,44-46]。Xu等[22]報道,在去勢抵抗性前列腺癌中發(fā)現一組EZH2相關基因,它們不與PRC2亞基SUZ12結合,也不發(fā)生H3K27三甲基化。這些基因大多在EZH2敲除后下調。提示EZH2是這些基因的激活因子,而且這一作用不依賴PRC2,還發(fā)現這種功能轉變依賴EZH2的S21磷酸化和完整的甲基轉移酶結構域。EZH2可能通過甲基化雄激素受體或其他相關蛋白而介導轉錄激活,這是EZH2的一個新的功能——非組蛋白甲基化。
乳腺癌中,EZH2通過2種不同的方式誘導基因轉錄,取決于細胞內雌激素受體(estrogen receptor,ER)的水平。在ER-陰性基底細胞樣乳腺癌細胞MDA-MB-231中,EZH2與核因子-κB的2個亞基RelA及RelB形成一個三元復合體,組成性激活核因子-κB靶基因如白介素-6和腫瘤壞死因子的轉錄[44]。在ER-陽性管腔型乳腺癌MCF-7細胞中,EZH2在cyclin B1與c-Myc啟動子區(qū)作為一個橋梁物理性連接ERα與Wnt信號通路的2個元件——E-鈣黏蛋白與T細胞因子,反式激活雌激素靶基因與Wnt信號通路,促進細胞周期進展[45-46]。EZH2的反式激活結構域Ⅱ位于N末端,是轉錄因子與轉錄中介體復合物連結的平臺,通過與RNA聚合酶Ⅱ相互作用并誘導轉錄。EZH2對基因的反式激活作用不依賴PRC2的其他亞基,也不依賴SET結構域與甲基轉移酶活性。在2種乳腺癌中,雖然EZH2都具有轉錄激活功能,但機制不同。
由于EZH2是腫瘤細胞增殖、遷移、浸潤和干細胞特性保持的重要調節(jié)因子,因此EZH2是腫瘤治療的一個理想靶點。DZNep(3-deazaneplanocin A)是一種s腺苷同型半胱氨酸(S-adenosylhomocysteine,SAH)水解酶抑制劑,SAH參與蛋氨酸循環(huán)[47]。如圖2[48],DZNep抑制SAH水解酶,引起SAH水平升高,通過旁路途徑阻斷蛋氨酸循環(huán),間接抑制PRC2的活性,下調H3K27me3水平,重新活化PRC2的靶基因。DZNep誘導腫瘤細胞發(fā)生凋亡,但對正常細胞沒有影響[47]。為研究EZH2在腫瘤中的作用,該藥被廣泛用于各種腫瘤的臨床前和體外研究,并已證實能有效抑制細胞增殖和腫瘤生長[49-51]。DZNep對乳腺癌易感蛋白1缺失型乳腺癌細胞的殺傷效果是乳腺癌易感蛋白1成熟型乳腺癌細胞的20倍,內在機制尚不清楚[52]。

圖2 DZNep作為SAH水解酶抑制劑可間接降低EZH2和H3K27me3水平
開發(fā)的幾種針對EZH2的高度選擇性小分子抑制劑,如GSK126、EPZ005678、EI1、和EPZ6438[53-56]。這些抑制劑在淋巴瘤患者中對含Y641突變型EZH2的作用比對野生型EHZ2的作用大。當前,除EPZ6438正在B細胞淋巴瘤和晚期實體瘤患者中進行臨床Ⅰ/Ⅱ期試驗外,其余均處于臨床前實驗階段。EZH2抑制后,腫瘤細胞對其他抗癌藥物敏感性提高,如HDACs抑制劑、伊馬替尼、吉西他濱、紫杉醇、順鉑,提示聯(lián)合用藥可能療效更好。
除特異性EZH2抑制劑外,一些飲食性天然成分也可以下調EZH2,包括ω-3多不飽和脂肪酸、姜黃素和表沒食子兒茶素沒食子酸酯。Dmiri等[57]報道,ω-3多不飽和脂肪酸可誘導EZH2蛋白泛素化,發(fā)生蛋白酶體介導的EZH2蛋白降解,下調EZH2蛋白在乳腺癌細胞中的表達與活性。ω-3多不飽和脂肪酸可以使被EZH2沉默的抑癌基因重新表達,如E-鈣黏蛋白與胰島素樣生長因子結合蛋白,最終降低乳腺癌的浸潤性。姜黃素是姜黃根粉末中的一種天然成分,可調節(jié)EZH2水平并誘導G1期阻滯,從而抑制MDA-MD-435乳腺癌細胞增殖。分裂原活化蛋白激酶通路參與姜黃素介導的EZH2水平下調,有助于姜黃素的抗乳腺癌細胞增殖效應[58]。研究顯示,一種主要的綠茶多酚表沒食子兒茶素沒食子酸酯,在皮膚癌細胞中誘導EZH2發(fā)生蛋白酶體依賴性降解,且在與DZNep聯(lián)合用藥時抗癌效果更好[59]。
如圖3[2],EZH2的經典作用是甲基化H3K27來介導基因沉默;但研究顯示EZH2甲基化底物不限于組蛋白[46],即EZH2具有甲基化非組蛋白底物從而激活基因轉錄的作用;此外,EZH2還可通過非甲基化作用直接反式激活基因轉錄,即EZH2具有甲基轉移酶非依賴性功能[47-48]。這些經典作用以外的功能在腫瘤發(fā)生時有重要作用。特異性靶向EZH2抑制劑通過結合至EZH2催化活性位點直接抑制其酶活性,從而使組蛋白的甲基化水平整體性降低,其中EPZ6438正在B細胞淋巴瘤和晚期實體瘤患者中進行臨床Ⅰ/Ⅱ期試驗,但該類小分子抑制劑具有潛在的不良反應。EZH2在維持細胞正常狀態(tài)中也有重要作用,因此未來應重點解決如何在某種特定腫瘤細胞或某個特定微環(huán)境中有效控制EZH2表達的調節(jié)環(huán)路。

圖3 EZH2在人類腫瘤中的多種作用
【參考文獻】
[1]Tan JZ,Yan Y,Wang XX,et al.EZH2:biology,disease,and structure-based drug discovery[J].Acta Pharmacol Sin,2014,35(2):161-174.
[2]Yamaguchi H,Hung MC.Regulation and role of EZH2 in cancer[J].Cancer Res Treat,2014,46(3):209-222.
[3]Cardoso C,Mignon C,Hetet G,et al.The human EZH2 gene: genomic organisation and revised mapping in 7q35 with in the critical region for malignant myeloid disorders[J].Eur J Hum Genet,2000,8(3):174-180.
[4]Copeland RA,Solomon ME,Richon VM.Protein methyltransferases as a target class for drug discovery[J].Nat Rev Drug Discov,2009,8(9):724-732.
[5]Xiao B,Wilson JR,Gamblin SJ.SET domains and histone methylation[J].Curr Opin Struct Biol,2003,13(6):699-705.
[6]O’Meara MM,Simon JA.Inner workings and regulatory inputs that control Polycomb repressive complex 2[J].Chromosoma,2012,121(3):221-234.
[7]Montgomery ND,Yee D,Montgomery SA,et al.Molecular and functional mapping of EED motifs required for PRC2-dependent histoneme thylation[J].J Mol Biol,2007,374 (5):1145-1157.
[8]Pasini D,Bracken AP,Jensen MR,et al.Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity[J].EMBO J,2004,23(20):4061-4071.
[9]Viré E,Brenner C,Deplus R,et al.The Polycomb group protein EZH2 directly controls DNA methylation[J].Nature,2006,439(7078):871-874.
[10]Wang H,Wang L,Erdjument-Bromage H,et al.Role of histone H2A ubiquitination in Polycomb silencing[J].Nature,2004,431(7010):873-878.
[11]van der Vlag J,Otte AP.Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation[J].Nat Genet,1999,23(4):474-478.
[12]Lee HW,Choe M.Expression of EZH2 in renal cell carcinoma as a novelprognostic marker[J].Pathol Int,2012,62 (11):735-741.
[13]Deb G,Thakur VS,Gupta S.Multifaceted role of EZH2 in breast and prostate tumorigenesis:epigenetics and beyond [J].Epigenetics,2013,8(5):464-476.
[14]Chen Y,Xie D,Yin Li W,et al.RNAi targeting EZH2 inhibits tumor growth and liver metastasis of pancreatic cancer in vivo[J].Cancer Lett,2010,297(1):109-116.
[15]Guo J,Cai J,Yu L,et al.EZH2 regulates expression of p57 and contributes to progression of ovarian cancerin vitro and in vivo[J].Cancer Sci,2011,102(3):530-539.
[16]Kalashnikova EV,Revenko AS,Gemo AT,et al.ANCCA/ ATAD2 overexpression identifies breast cancer patients with poor prognosis,acting to drive proliferation and survival of triple-negative cells through control of B-Myb and EZH2[J].Cancer Res,2010,70(22):9402-9412.
[17]Koh CM,Iwata T,Zheng Q,et al.Myc enforces overexpression of EZH2 in early prostatic neoplasia via transcriptional and post-transcriptional mechanisms[J].Oncotarget,2011,2(9):669-683.
[18]Lu C,Han HD,Mangala LS,et al.Regulation of tumor angiogenesis by EZH2[J].Cancer Cell,2010,18(2):185-197.
[19]Bracken AP,Pasini D,Capra M,et al.EZH2 is downstream of the pRB-E2F pathway,essential for proliferation and amplified in cancer[J].EMBO J,2003,22(20):5323-5335.
[20]Duan Z,Zou JX,Yang P,et al.Developmental and androgenic regulation of chromatin regulators EZH2 and ANCCA/ ATAD2 in the prostate Via MLL histone methylase complex[J].Prostate,2013,73(5):455-466.
[21]Cha TL,Zhou BP,Xia W,et al.Akt-mediated phosphorylation of EZH2 suppresses methylatio n of lysine 27 in histone H3[J].Science,2005,310(5746):306-310.
[22]Xu K,Wu ZJ,Groner AC,et al.EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent[J].Science,2012,338(6113):1465-1469.
[23]Sahasrabuddhe AA,Chen X,Chung F,et al.Oncogenic Y641 mutations in EZH2 prevent Jak2/β-TrCP-mediated degradation[J].Oncogene,2015,34(4):445-454.
[24]Kaneko S,Li G,Son J,et al.Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA[J].Genes Dev,2010,24(23):2615-2620.
[25]Wei Y,Chen YH,Li LY,et al.CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells[J].Nat Cell Biol,2011,13(1):87-94.
[26]Minnebo N,G?rnemann J,O’Connell N,et al.NIPP1 maintains EZH2 phosphorylation and promoter occupancy at proliferation-related target genes[J].Nucleic Acids Res,2013,41(2):842-854.
[27]Chen S,Bohrer LR,Rai AN,et al.Cyclin-dependent kinases regulate epigenetic gene silencing through phosphorylation of EZH2[J].Nat Cell Biol,2010,12(11):1108-1114.
[28]Wu SC,Zhang Y.Cyclin-dependent kinase 1(CDK1)-mediated phosphorylation of enhancer of zeste2(Ezh2)regulates its stability[J].J Biol Chem,2011,286(32):28511-28519.
[29]Morin RD,Johnson NA,Severson TM,et al.Somatic mutations altering EZH2(Tyr641)in follicular and diffuse large B-cell lymphomas of germinal-center origin[J].Nat Genet,2010,42(2):181-185.
[30]McCabe MT,Graves AP,Ganji G,et al.Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27(H3K27)[J].Proc Natl Acad Sci USA,2012,109 (8):2989-2994.
[31]Majer CR,Jin L,Scott MP,et al.A687V EZH2 is a gain-offunction mutation found in lymphoma patients[J].FEBS Lett,2012,586(19):3448-3451.
[32]Béguelin W,Popovic R,Teater M,et al.EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation[J].Cancer Cell,2013,23 (5):677-692.
[33]Sneeringer CJ,Scott MP,Kuntz KW,et al.Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3(H3K27) in human B-cell lymphomas[J].Proc Natl Acad Sci USA,2010,107(49):20980-20985.
[34]Ernst T,Chase AJ,Score J,et al.Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders[J].Nat Genet,2010,42(8):722-726.
[35]Nikoloski G,Langemeijer SM,Kuiper RP,et al.Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes[J].Nat Genet,2010,42(8):665-667.
[36]Ntziachristos P,Tsirigos A,Van Vlierberghe P,et al.Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia[J].Nat Med,2012,18 (2):298-301.
[37]Abdel-Wahab O,Pardanani A,Patel J,et al.Concomit antanalysis of EZH2 and ASXL1 mutations in myelofibrosis,chronic myelomonocytic leukemia and blast-phase myeloproliferative neoplasms[J].Leukemia,2011,25(7):1200-1202.
[38]Bejar R,Stevenson K,Abdel-Wahab O,et al.Clinical effect of point mutations in myelodysplastic syndromes[J].N Engl J Med,2011,364(26):2496-2506.
[39]Patel JP,G?nen M,Figueroa ME,et al.Prognostic relevance of integrated genetic profiling in acute myeloid leukemia[J].N Engl J Med,2012,366(12):1079-1089.
[40]Muto T,Sashida G,Oshima M,et al.Concurrent loss of Ezh2 and Tet2 cooperates in the pathogenesis of myelodysplastic disorders[J].J Exp Med,2013,210(12):2627-2639.
[41]Yang Y,Zhou L,Lu L,et al.A novel miR-193a-5p-YY1-APC regulatory axis in human endometrioid endometrial adenocarcinoma[J].Oncogene,2013,32(29):3432-3442.
[42]Yoo KH,Hennighausen L.EZH2 methyltransferase and H3K27 methylation in breast cancer[J].Int J Biol Sci,2012,8(1): 59-65.
[43]Toll AD,Dasgupta A,Potoczek M,et al.Implications of enhancer of zeste homologue 2 expression in pancreatic ductal adenocarcinoma[J].Hum Pathol,2010,41(9):1205-1209.
[44]Lee ST,Li Z,Wu Z,et al.Context-specific regulation of NF-κB target gene expression by EZH2 in breast cancers [J].Mol Cell,2011,43(5):798-810.
[45]Shi B,Liang J,Yang X,et al.Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells[J].Mol Cell Biol,2007,27(14): 5105-5119.
[46]Jung HY,Jun S,Lee M,et al.PAF and EZH2 induce Wnt/ β-catenin signaling hyperactivation[J].Mol Cell,2013,52 (2):193-205.
[47]Tan J,Yang X,Zhuang L,et al.Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells[J].Genes Dev,2007,21(9):1050-1063.
[48]Chase A,Cross NC.Aberrations of EZH2 in cancer[J]. Clin Cancer Res,2011,17(9):2613-2618.
[49]Suvà ML,Riggi N,Janiszewska M,et al.EZH2 is essential for glioblastoma cancer stem cell maintenance[J].Cancer Res,2009,69(24):9211-9218.
[50]Wu Z,Lee ST,Qiao Y,et al.Polycomb protein EZH2 regulates cancer cell fat edecision in response to DNA damage [J].Cell Death Differ,2011,18(11):1771-1779.
[51]Sun F,Chan E,Wu Z,et al.Combinatorial pharmacologic approaches target EZH2-mediated gene repression in breast cancer cells[J].Mol Cancer Ther,2009,8(12):3191-3202.
[52]Puppe J,Drost R,Liu X,et al.BRCA1-deficient mammary tumor cells are dependent on EZH2 expression and sensitive to Polycomb Repressive Complex 2-inhibitor 3-deazaneplanocin A[J].Breast Cancer Res,2009,11(4):R63.
[53]McCabe MT,Ott HM,Ganji G,et al.EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations[J].Nature,2012,492(7427):108-112.
[54]Knutson SK,Wigle TJ,Warholic NM,et al.A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphomacells[J].Nat Chem Biol,2012,8(11):890-896.
[55]Knutson SK,Kawano S,Minoshima Y,et al.Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-Hodgkin lymphoma[J].Mol Cancer Ther,2014,13(4):842-854.
[56]Qi W,Chan H,Teng L,et al.Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation [J].Proc Natl Acad Sci USA,2012,109(52):21360-21365.
[57]Dimri M,Bommi PV,Sahasrabuddhe AA,et al.Dietary omega-3 polyunsaturated fatty acids suppress expression of EZH2 in breast cancer cells[J].Carcinogenesis,2010,31 (3):489-495.
[58]Hua WF,Fu YS,Liao YJ,et al.Curcumin induces downregulation of EZH2 expression through the MAPK pathway in MDA-MB-435 human breast cancer cells[J].Eur J Pharmacol,2010,637(1/3):16-21.
[59]Nandakumar V,Vaid M,Katiyar SK.(-)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes,Cip1/p21 and p16INK4a,by reducing DNA methylation and increasing histones acetylation in human skin cance rcells[J].Carcinogenesis,2011,32(4):537-544.
Progress on enhancer of zeste homolog 2 gene and tumor development
HUANG Yuan1,WANG Xiaochun2
(1.Department of Clinical Laboratory,the First Hospital of Xi’an,Xi’an Shanxi 710002,China;2.Department of Laboratory,Medical School of Xiangya,Central South University,Changsha Hunan 410013,China)
Polycomb repressive complex 2(PRC2)is the epigenetic regulator that induces histone H3 lysine 27 methylation(H3K27me3)and silences specific gene transcription.Enhancer of zeste homolog 2(EZH2)is an enzymatic subunit of PRC2,and evidence shows that EZH2 plays an essential role in cancer initiation,development,progression,metastasis,and drug resistance.The EZH2 histone methyltransferase usually cooperates with other epigenetic silencing enzymes.In solid tumors,overexpression of EZH2 is associated with aggressive biology,metastasis,and poor clinical outcome.EZH2 expression is indeed regulated by various oncogenic transcription factors.EZH2 activity and stability are regulated by various phosphorylated state of each phosphorylation site.EZH2 gene mutations occur frequently in hematological malignances.In addition to its role as a transcriptional repressor,several studies have shown that EZH2 may also function in target gene activation. As a result,EZH2 is considered a potential drug target.Currently,its highly selective small molecule inhibitors EPZ-6438 is being tested in phaseⅠ/Ⅱclinical trials.
Enhancer of zeste homolog 2(EZH2);Polycomb repressive complex 2 (PRC2);Neoplasms;Transcriptional repression;Gene activation
Q71;R73
A
2095-3097(2016)06-0370-06
10.3969/j.issn.2095-3097.2016.06.014
2016-01-19 本文編輯:徐海琴)
湖南省科學技術廳科技計劃一般項目社會發(fā)展支撐計劃(2014SK3102)
710002陜西西安,西安市第一醫(yī)院檢驗科(黃 嫄);410013湖南長沙,中南大學湘雅醫(yī)學院檢驗系(王曉春)