999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

兩個基于β-二酮席夫堿配體構(gòu)筑的銀配合物的合成、晶體結(jié)構(gòu)和熒光性質(zhì)

2016-12-06 09:05:13張奇龍徐紅馮廣衛(wèi)黃亞勵貴州醫(yī)科大學化學教研室貴陽550004
無機化學學報 2016年8期

張奇龍 徐紅 馮廣衛(wèi) 黃亞勵(貴州醫(yī)科大學化學教研室,貴陽550004)

兩個基于β-二酮席夫堿配體構(gòu)筑的銀配合物的合成、晶體結(jié)構(gòu)和熒光性質(zhì)

張奇龍*徐紅馮廣衛(wèi)黃亞勵
(貴州醫(yī)科大學化學教研室,貴陽550004)

在常溫的條件下,分別將2個雙β-二酮席夫堿配體與銀鹽進行配位反應得到2個銀配合物,{[Ag(L1)](SbF6)}n(1)和[Ag2(L2)2] (BF4)2(2)(L1=1,3-bis(4-methylamino-pentan-2-one)phenyl,L2=1,3-bis(3-methylamino-1-phenyl-butan-1-one)phenyl),并通過元素分析、紅外光譜、粉末X射線衍射分析、單晶X射線衍射等對其結(jié)構(gòu)進行了表征。結(jié)構(gòu)分析表明,在配合物1中,銀離子與配體L1中的2個碳原子和2個氧原子配位,形成一維鏈狀結(jié)構(gòu),而配合物2中銀離子與L2配體中的2個氧原子和2個碳原子配位,最終得到雙核二聚體結(jié)構(gòu)。化合物1和2都通過陰離子與結(jié)構(gòu)單元之間的C-H…F作用,最終形成三維超分子結(jié)構(gòu)。此外,我們還研究了化合物1、2以及配體的熒光性質(zhì)。

銀配合物;晶體結(jié)構(gòu);熒光性質(zhì);氫鍵作用

0 Introduction

As an outstanding representative of inorganicorganic hybrid materials,the coordination complexes have drawn much attention in last two decades for their diverse structures as well as tunable applications[1-5].The acetylacetone Schiff bases,which holding semi-enclosed structure,generally contain carbonyl groups and secondary nitramine groups together,can act as the hydrogen bonds donors and acceptors in theassembly of coordination complexes[6-8].Owing to their strong coordination ability and multiple coordination modes,the acetylacetone Schiff bases have been widelyusedintheassemblyofcoordination complexes,which show potential applications in the field of gas storage and separation,heterogeneous catalysis,magnetism,luminescence,and so on[9-10].

Inspired by the above-mentioned points,we were interested in the syntheses and properties of bis(βdiketone)Schiff bases coordination complexes and reported two novel silver coordination complexes, {[Ag(L1)](SbF6)}n(1)and[Ag2(L2)2](BF4)2(2)(L1=1,3-bis(4-methylamino-pentan-2-one)phenyl,L2=1,3-bis(3-methylamino-1-phenyl-butan-1-one)phenyl).In complex 1,the center Ag(Ⅱ)ions connected with two C atoms and two O atoms to form a one-dimensional chain, while the complex 2 is a binuclear silver complex. Moreover,the luminescence investigation shows that complexes 1 and 2 emitted green and blue fluorescence, respectively.

1 Experimental

1.1Materials and methods

Allchemicalswerecommerciallyobtained without further purification.IR spectra were measured on a Nicolet 740 FTIR Spectrometer at the range of 400~4 000 cm-1.Elemental analyses were carried out on a CE instruments EA 1110 elemental analyzer. Fluorescence spectra were performed on a Hitachi F-4500 fluorescence spectrophotometer at room temperature.Powder X-ray diffraction(PXRD)analyses were performed on an X-ray diffractometer(D/max 2500 PC, Rigaku)with Cu Kα radiation(λ=0.154 06 nm).

1.2Synthesis

1.2.1Synthesis of{[Ag(L1)](SbF6)}n(1)

AgSbF6(34.4 mg,0.1 mmol)in ethanol(20 mL) was added dropwise with stirring to L1(30.4 mg,0.1 mmol)in ethanol(20 mL)and the mixture was stirred at room temperature for several days.Slow evaporation of this solution yielded colorless block crystals that proved suitable for X-ray analysis.The precipitate that formed was collected by filtration,and dried at room temperature to give 1 in 48%yield based on Ag. Anal.Calcd.for C18H24AgF6N2O2Sb(%):C,33.57;H, 3.76;N,4.35.Found(%):C,33.31;H,3.58;N,4.41. IR(KBr pellet,cm-1):3 438(s),3 149(m),1 617(vs), 1 519(s),1 401(s),1 303(m),1 169(w),1 074(s),808 (m),592(m),472(m).

1.2.2Synthesis of[Ag2(L2)2](BF4)2(2)

The synthesis of 2 is similar to 1 using AgBF4(19.4 mg,0.1 mmol)and L2(42.8 mg,0.1 mmol)instead of AgSbF6and L1.Colorless block.Yield:54%yield based on Ag.Anal.Calcd.for C56H56Ag2B2F8N4O4(%): C,54.31;H,4.56;N,4.52.Found(%):C,54.37;H, 4.61;N,4.56.IR(KBr pellet,cm-1):3 440(s),3 129 (m),1 587(vs),1 544(m),1 436(m),1 393(s),1 319 (m),1 223(w),1 061(vs),1 008(m),857(w),782(m), 707(m),569(w),523(w).

1.3X-ray crystallography

The single-crystal X-ray diffraction was performed on a Bruker Smart ApexⅡCCD diffractometer. Intensities of reflections were measured using graphite -monochromatized Mo Kα radiation(λ=0.071 073 nm) at 296(2)K with the data collection θ ranging from 1.67°to 26°for 1,and at 293(2)K with the data collection θ ranging from 1.73°to 25.01°for 2, respectively.The structurewassolvedbydirect methods using the SHELXS program of the SHELXTL package and refined with SHELXL[11].Anisotropic thermal factors were assigned to all the non-hydrogen atoms.H atoms attached to C were placed geometrically and allowed to ride during subsequent refinement with an isotropic displacement parameter fixed at 1.2 times Ueqof the parent atoms.H atoms bonded to O or N atoms were first located in difference Fourier maps and then placed in the calculated sites and included in the refinement.Crystallographic data parameters for structural analyses are summarized in Table 1.Selected bond lengths and angles for complex 1 and 2 are listed in Table 2 and Table 3,respectively.

CCDC:1469231,1;1469232,2.

2 Results and discussion

2.1Crystal structure of{[Ag(L1)](SbF6)}n(1)

Complex 1 crystallizes in the triclinic space group P1,and its asymmetric unit contains onecrystallographically independent Ag(Ⅱ)ion,one L1ligand,and one SbF6-anion.As shown in Fig.1,the Ag(Ⅱ)ion is four-coordinated by two oxygen atoms (O1iiand O2i),and two carbon atoms(C10 and C15) from three different L1ligands.The central Ag(Ⅱ)ion located in a distorted AgC2O2tetrahedral coordination geometry,with the τ4=0.70(τ4=[360°-(α+β)]/141°,in which α and β are the two largest bond angles in the four-coordinate complex)[12].Besides,the Ag-C bond lengths are 0.234 0(9)and 0.236 7(1)nm,while the Ag-Odistancesare 0.237 1(4)and 0.274 4(9)nm (Table 2).Except the weak Ag1-O2iiinteractions,other bond lengths are in the normal ranges of Ag-O bonds in silver complexes[13].In the complex 1,two acetylacetone units of the L1ligand bridge three Ag(Ⅱ)centres through Oacetylacetoneand Cacetylacetone,extending in the direction of a axis,leaving a one-dimensional polymeric chain finally,with the nearest Ag…Ag distances being 0.527 7(6)and 0.565 3(2)nm(Fig.2). The one-dimensional polymeric chains interacted with the SbF6-anions through C-H…F hydrogen bonds (Table 4),finally gave a three-dimensional supramolecular network(Fig.3).

Table 1Crystal structure parameters of complexes 1 and 2

Table 2Selected bond lengths(nm)and bond angles(°)for 1

Table 3Selected bond lengths(nm)and bond angles(°)for 2

Table 4Hydrogen bond geometry of complex 1

Fig.1Asymmetric unit of complex 1 with 30% probability level

Fig.2One-dimensional polymeric chain structure of complex 1

Fig.3Three-dimensional supramolecular framework of complex 1

2.2Crystal structure of[Ag2(L2)2](BF4)2(2)

In complex 2,the steric effects of phenyl group in L2ligand make it impossible to form a similar 1D polymeric chain structure like 1.Complex 2 crystallizes in the monoclinic space group P21/c.There are one crystallographically independent silver ion,one L2ligand,and one BF4-anion in the asymmetric unit of 2 (Fig.4).The central Ag(Ⅱ)ion is three-coordinated by one oxygen atom(O1),and two carbon atoms(C21 and C8i)from two different L2ligands.And the Ag-C bond lengths are 0.228 3(7)and 0.230 1(6)nm,the Ag-O distance is 0.236 7(0)nm,respectively(Table 3).The units interacted with the adjancent ones and the BF4-anions through the C-H…F andC-H…O hydrogen bond interactions(Table 5),and finally give a stable three-dimensional supramolecular architecture (Fig.5).

Fig.4Molecular structure of complex 2 with 30% probability level

Table 5Hydrogen-bond geometry of complex 2

Fig.5Three-dimensional supramolecular framework ofcomplex 2

2.3Powder X-ray diffraction

In order to check the phase purity of the complexes,the PXRD patterns of title complexes were determined at room temperature.As shown in Fig.6, the peak positions of the simulated and experimental PXRD patterns are in agreement with each other, demonstrating the good phase purity of the complexes. The dissimilarities in intensity may be due to the preferredorientationofthecrystallinepowder samples.

Fig.6PXRD patterns of 1(a)and 2(b)

2.4Photoluminescent properties

Many coordination complexes have been extensively studied due to their potential applications as luminescent materials[14-16].The solid-state luminescent properties of the complexes and the ligands were investigated at room temperature.The photoluminescence spectra of two organic ligands and complex 1 and 2 are shown in Fig.7.The L1and L2display photoluminescence with max emission peak at 518 nm (λex=488 nm),and 483 nm(λex=398 nm),respectively. It can be presumed that the peak originate from the π*→n or π*→π transitions[17-18].It can be observed that intense emissions occur at 514 nm(λex=486 nm) for 1,and 481 nm(λex=396 nm)for 2,respectively. The resemblance of the emissions between the organic ligandsandtheirbasedcoordinationcomplexes indicates that the emissions of the two complexes are probably attributed to the π→π*transitions[19].

Fig.7Solid-state emission spectra of 1 and 2,and two free ligands at room temperature

3 Conclusions

In summary,two bis(β-diketone)Schiff bases silver coordinationcomplexes,{[Ag(L1)](SbF6)}n(1),and [Ag2(L2)2](BF4)2(2)have been reported.In complex 1, the center Ag(Ⅱ)ions connected with two C atoms and two O atoms to form a one-dimensional chain,while the complex 2 is a binuclear silver complex.Expanded by the weak C-H…F interactions between the units and anions and C-H…O hydrogen bonds between the adjacent units,two complexes formed three-dimensional supramolecularframeworkfinally.Moreover,the luminescence investigation shows that complexes 1 and 2 emitted green and blue fluorescence,respectively.

References:

[1]Zhang J P,Zhang Y B,Lin J B,et al.Chem.Rev.,2012,112: 1001-1033

[2]Chen X Y,Huang R B,Zheng L S,et al.Inorg.Chem., 2014,53:5246-5252

[3]Xue M,Lü Y C,Sun Q Q,et al.Cryst.Growth Des.,2015,15 (11):5360-5367

[4]Lin G Q,Ding H M,Yuan D Q,et al.J.Am.Chem.Soc., 2016,138(10):3302-3305

[5]Jiang J C,Zhao Y B,Yaghi O M.J.Am.Chem.Soc.,2016, 138(10):3255-3265

[6]Cherutoi J K,Sandifer J D,Pokharel U R,et al.Inorg.Chem., 2015,54(16):7791-7802

[7]ZHANG Qi-Long(張奇龍),WANG Huan-Yu(王煥宇),JIANG Feng(江峰),et al.Chinese J.Inorg.Chem.(無機化學學報), 2016,32:464-468

[8]Zhang Q L,Hu P,Zhao Y,et al.J.Solid State Chem.,2014, 210:178-187

[9]Zhang Q,Ma J P,Wang P,et al.Cryst.Growth Des.,2008,8 (7):2581-2587

[10]Pariya C,Fronczek F R,Maverick A W.Inorg.Chem.,2011, 50(7):2748-2753

[11]Sheldrick G M.SHELXS-97,Program for Crystal Structure Refinement,University of G?ttingen,G?ttingen,Germany, 1997.

[12]Fan L M,Fan W L,Li B,et al.CrystEngComm,2015,17: 9413-9422

[13]ZHANG Qi-Long(張奇龍),FENG Guang-Wei(馮廣衛(wèi)),HU Peng(胡鵬).Chinese J.Inorg.Chem.(無機化學學報),2014, 30:2433-2439

[14]Chen D M,Ma X Z,Shi W,et al.Cryst.Growth Des.,2015, 15(8):3999-4004

[15]ZHANG Qi-Long(張奇龍).Chinese J.Inorg.Chem.(無機化學學報),2015,31:2213-2220

[16]Wang W,Yang J,Wang R M,et al.Cryst.Growth Des., 2015,15(6):2589-2592

[17]LI Guo-Feng(李國峰),LI Xiu-Mei(李秀梅),JI Jian-Ye(紀建業(yè)),et al.Chinese J.Inorg.Chem.(無機化學學報),2014, 30:1947-1953

[18]Fan L M,Zhang X T,Li D,et al.CrystEngComm,2013,15: 349-355

[19]Zhang X T,Fan L M,Fan W L,et al.CrystEngComm,2015, 17:6681-6692

Syntheses,Structures and Luminescent Properties of Two Silver Coordination Complexes Based on Bis(β-diketone)Schiff Bases

ZHANG Qi-Long*XU HongFENG Guang-WeiHUANG Ya-Li
(Department of Chemistry,Guizhou Medical University,Guiyang 550004,China)

Two silver complexes,namely{[Ag(L1)](SbF6)}n(1)and[Ag2(L2)2](BF4)2(2),have been obtained by the reaction of silver salts with two different bis(β-diketone)Schiff bases(L1=1,3-bis(4-methylamino-pentan-2-one) phenyl,and L2=1,3-bis(3-methylamino-1-phenyl-butan-1-one)phenyl)in the ethanol solution.In complex 1,the center Ag(Ⅱ)ions connected with two C atoms and two O atoms to form a one-dimensional chain,while the complex 2 is a binuclear silver complex.Expanded by the weak C-H…F interactions between the units and anions and C-H…O hydrogen bonds between the adjacent units,three-dimensional supramolecular structures of two complexes formed finally.Moreover,the luminescent properties of two silver complexes and their based organic ligands have been investigated.CCDC:1469231,1;1469232,2.

silver complex;crystal structure;fluorescent property;hydrogen bonds

O614.122

A

1001-4861(2016)08-1421-06

10.11862/CJIC.2016.151

2016-03-18。收修改稿日期:2016-05-03。

貴州省科技計劃課題(黔科合LH字[2014]7090)、貴州省教育廳自然科學研究項目(黔教合KY字[2015]415號)和貴陽市科技局國家自然科學基金培育項目(No.GY2015-41)資助。

*通信聯(lián)系人。E-mail:gzuqlzhang@126.com

主站蜘蛛池模板: 色婷婷视频在线| 国产成人综合亚洲网址| 色婷婷在线影院| 亚洲AV色香蕉一区二区| 欧美高清日韩| 国产精品流白浆在线观看| 日日拍夜夜嗷嗷叫国产| 国产成人盗摄精品| 亚洲第一天堂无码专区| 99精品国产自在现线观看| 亚洲精品国产成人7777| 亚洲丝袜第一页| 欧美亚洲第一页| 日韩av在线直播| 亚洲男人的天堂久久香蕉网| 在线视频一区二区三区不卡| 免费无码AV片在线观看国产 | 国产成人艳妇AA视频在线| 国产在线一区视频| 亚洲妓女综合网995久久| 国产成人精品一区二区免费看京| 亚洲Va中文字幕久久一区| 国产日韩欧美视频| 欧美日韩免费| 一级毛片在线免费视频| 精品国产一区91在线| 中文字幕在线播放不卡| 欧美日韩国产一级| 欧美日韩动态图| 国产精品视频白浆免费视频| 玩两个丰满老熟女久久网| 尤物亚洲最大AV无码网站| 亚洲欧美精品日韩欧美| 国内老司机精品视频在线播出| 欧美在线精品怡红院| 91精品国产丝袜| av无码久久精品| 亚洲va欧美ⅴa国产va影院| 国产精品三区四区| 99成人在线观看| 欧美日韩国产精品va| 免费全部高H视频无码无遮掩| 精品超清无码视频在线观看| 国模粉嫩小泬视频在线观看| 九九香蕉视频| 伊人久热这里只有精品视频99| 婷婷六月在线| 91在线播放国产| 婷婷午夜天| 亚洲精品动漫在线观看| 91色在线观看| 久久免费视频6| 国产系列在线| 国产毛片不卡| 国产高清精品在线91| 亚洲精品国偷自产在线91正片| 国产精品乱偷免费视频| 亚洲AV成人一区国产精品| 国产女人水多毛片18| 色综合日本| 伊人久久婷婷五月综合97色| 婷婷伊人久久| 亚洲欧美另类视频| a毛片在线| 男人天堂亚洲天堂| 永久免费av网站可以直接看的| 热99re99首页精品亚洲五月天| 久久伊人色| 国产欧美视频在线观看| 国产精品久久久久久搜索 | 国产va在线观看| 精品综合久久久久久97| 人妻少妇乱子伦精品无码专区毛片| 国产91在线免费视频| 99热精品久久| 69av在线| 国产精品夜夜嗨视频免费视频 | 人妻少妇久久久久久97人妻| AV无码无在线观看免费| 久久www视频| 国产精品亚洲精品爽爽| a网站在线观看|