999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

方程φe(n)=(e=1,2,4)的可解性

2016-11-11 02:04:28王容廖群英
純粹數學與應用數學 2016年5期
關鍵詞:數學

王容,廖群英

(四川師范大學數學與軟件科學學院,四川 成都 610066)

方程φe(n)=(e=1,2,4)的可解性

王容,廖群英

(四川師范大學數學與軟件科學學院,四川 成都610066)

利用已有的廣義歐拉函數的準確計算公式來研究方程φe(n)的可解性,其中n為正整數,d為n的正因子.并利用初等的方法和技巧給出方程的全部正整數解(n,d).

廣義歐拉函數;丟番圖方程;正整數解

1 引言

定義 1.1[1-2]正整數n的廣義歐拉函數定義為:

即φe(n)等于序列中與n互素的數的個數,其中e為正整數.容易證明:

其中[·]是高斯函數,μ(n)是麥比烏斯函數,即

其中且αi≥0,pi(1≤i≤s)為不同的素數.特別的,當e=1時,即

熟知,φ(n)表示序列0,1,2,···,n-1中與n互素的整數個數,即著名的歐拉函數[3].該函數有著很廣泛的應用,例如,求離散數學中循環群的生成元,同時它也是RSA公鑰密碼體制得以建立的重要數學工具之一[4].

事實上,φe(n)的定義是蔡天新等人為將Lehmer同余式從模素數的平方推廣到模任意整數的平方時所給出的.易知

進而,蔡天新等人給出了

的準確計算公式[5-7].

蔡天新等人不僅完全確定了廣義歐拉函數 φe(n)(e=1,2,3,4,6)的計算公式,還研究了φe(n)和φe(n+1)(e=4,6)同為奇數時n的取值;同時,近幾年也有很多關于歐拉函數和廣義歐拉函數方程的研究.比如,呂志宏[8]用初等的方法研究了方程

的可解性.孫翠芳,程智[9]研究了方程

的可解性,同時獲得了該方程的所有正整數解,其中k為素數.田呈亮等人[10]給出了方程

的所有正整數解.同樣,人們也希望利用廣義歐拉函數的準確計算公式來討論一些不定方程的解.本文相關問題研究,討論方程

的全部正整數解(n,d),其中n為正整數,d為n的正因子,d≥2且e=1,2,4.為求解方程(1),需要φ4(n)的準確計算公式,即如下

引理1.1[6]設

我們證明了如下主要結果.

定理1.1設正整數n=2α,其中α≥3.則方程(1)的全部正整數解為

(1)若α=0且存在pi≡1(mod 4).則方程(1)的全部正整數解為

(2)若α=1且存在pi≡1(mod 4).則方程(1)的全部正整數解為

(3)若α≥2,則方程(1)的全部正整數解為

定理1.5設e=4,正整數

其中α∈{0,1},且?i=1,···,k,αi≥1,奇素數pi≡3(mod 4),p1<p2<···<pk.則方程(1)的全部正整數解為

2 主要結果的證明

3 小結

為將Lehmer同余式的模從素數的平方推廣到任意整數的平方的情形,蔡天新等人定義了廣義歐拉函數φe(n),并且給出φe(n)(e=1,2,3,4,6)的準確計算公式,這些公式為討論廣義歐拉函數的性質及應用帶來了很多方便.進而,利用這些公式討論了φe(n)和φe(n+1)同為奇數時n滿足的條件[6-7].本文基于φe(n)(e=1,2,3,4,6)的證明,給出了正整數n的廣義歐拉函數的幾個充分條件,由此得到相應的φ5(n)的奇偶性判別.最后給出了的部分正整數解以及的全部正整數解,其中n是正整數,d是n的正因子.但一般情形下φe(n)的準確計算公式并沒有完全確定,有待進一步研究.

[1]Cai T X.A congruence involving the quotients of Euler and its applications(I)[J].Acta Aritmetica,2002,103(4):313-320.

[2]Cai T X,Fu X D,Zhou X.A congruence involving the quotients of Euler and its applications(II)[J].Acta Aritmetica,2007,130(3):203-214.

[3]Kenneth Ireland,Michael Rosen.A classical introduction to Modern Number Theory[M].New York:Springer-Verlag,1990.

[4]李鐵牛,李紅達.基于歐拉函數秘密分享的RSA私鑰的理性分布計算[J].計算機工程與科學,2010,32(9):11-17.

[5]Cai T X,Shen Z Y,Hu M J.On the parity of the generalized euler function[J].數學進展,2013,42(4):505-510.

[6]丁煜.廣義歐拉函數及其性質[D].浙江:浙江大學數學系,2008.

[7]Shen Z Y,Cai T X,Hu M J.On the parity of the generalized euler function(II)[J].數學進展,2016.

[8]呂志宏.一個包含Euler函數的方程[J].西北大學學報,2006,36(1):17-20.

[9]Sun C F,Cheng Z.Some kind of equations involving Euler funcion φ(n)[J].數學研究,2010,43(4):364-369.

[10]田呈亮,付靜,白維祖.一個包含歐拉函數的方程[J].純粹數學與應用數學,2010,26(1):96-98.

2010 MSC:11D72,11P55

On the solvability of the equation φe(n)=(e=1,2,4)

Wang Rong,Liao Qunying
(Institute of Mathematics and Software Science,Sichuan Normal University,Sichuan,Chengdu 610066,China)

In order to generalize Lehmer's congruences from modulo prime squares to modulo integer squares,Cai defined the generalized Euler function.The paper studies the solvability of the Diophantine equationwhere n is a positive integer and d is a positive factor of n.By the elementary methods and techniques,the solvability of the Diophantine equationrelated to the generalized the Euler function φe(n)(e=1,2,4)is studied.And then all solutions for the Diophantine equationare given.

generalized Euler function,Diophantine equation,positive integer solution elementary method,conjecture

O156.4

A

1008-5513(2016)05-0481-14

10.3969/j.issn.1008-5513.2016.05.005

2016-05-23.

國家自然科學基金重大項目(11401408);四川省教育廳重點項目(142A0034);四川省科技廳計劃項目(2016JY0134).

廖群英(1974-),博士生,教授,研究方向:編碼與密碼學理論.

猜你喜歡
數學
中等數學
中等數學(2021年4期)2021-12-04 13:57:52
中等數學
中等數學(2021年7期)2021-12-03 04:01:41
中等數學
中等數學(2021年1期)2021-12-02 03:08:08
中等數學
中等數學(2021年3期)2021-12-02 00:28:14
中等數學
中等數學(2020年11期)2020-12-18 01:23:21
我們愛數學
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數學就難過
數學也瘋狂
主站蜘蛛池模板: 精品欧美一区二区三区久久久| 免费A∨中文乱码专区| 亚洲浓毛av| 美女扒开下面流白浆在线试听| 欧美影院久久| 国产xx在线观看| 毛片在线播放网址| 中文字幕在线观看日本| 久99久热只有精品国产15| 宅男噜噜噜66国产在线观看| 亚洲中文字幕在线一区播放| 国产黑丝一区| 夜夜拍夜夜爽| 这里只有精品国产| 久久久久国色AV免费观看性色| 亚洲欧美日韩动漫| 免费看美女毛片| 福利国产微拍广场一区视频在线| 久久久久九九精品影院 | 亚洲第一av网站| 欧美精品啪啪一区二区三区| 国产白丝av| 午夜在线不卡| 欧美三级视频网站| 国产精品成人啪精品视频| 欧美人人干| 波多野结衣第一页| 无码 在线 在线| 日本人妻丰满熟妇区| 精久久久久无码区中文字幕| 2018日日摸夜夜添狠狠躁| av在线手机播放| 欧美一区二区精品久久久| 日韩欧美91| 国产人成乱码视频免费观看| 国产成人高清精品免费软件| 国产精品无码影视久久久久久久| 国产v精品成人免费视频71pao| 久久国产黑丝袜视频| a级毛片毛片免费观看久潮| 精品视频一区在线观看| 亚洲成在人线av品善网好看| 国产精品刺激对白在线| 成人午夜天| 欧美激情二区三区| 国产91丝袜在线播放动漫 | 亚洲中文无码av永久伊人| 国产在线专区| 久久美女精品国产精品亚洲| 欧美成人午夜视频| 一区二区三区精品视频在线观看| 国产成人艳妇AA视频在线| 无码中文字幕精品推荐| 在线欧美国产| 亚洲精品国产精品乱码不卞| 九色最新网址| h视频在线播放| 成人看片欧美一区二区| 色婷婷成人网| 91无码人妻精品一区| 国产不卡国语在线| 91精品啪在线观看国产60岁 | 亚洲第一成人在线| jizz亚洲高清在线观看| 在线播放国产一区| 青青草原国产| 国产视频久久久久| 2020国产免费久久精品99| 人妻少妇乱子伦精品无码专区毛片| 99久久精品国产自免费| 精品欧美日韩国产日漫一区不卡| 日韩在线观看网站| 亚洲自偷自拍另类小说| 欧美黄网在线| 99热这里只有精品在线观看| 亚洲男人在线| 国产成人毛片| 激情视频综合网| 中国成人在线视频| 巨熟乳波霸若妻中文观看免费 | 手机精品福利在线观看| 亚洲最大福利视频网|