王培培 龍惟定
(1同濟大學 機械與能源工程學院 上海 200092; 2 同濟大學 中德工程學院 上?!?00092)
?
王培培1龍惟定2
(1同濟大學 機械與能源工程學院上海200092; 2 同濟大學 中德工程學院上海200092)
在能源互聯網時代,區域供冷供熱系統將由原本單一形式的熱源向多種形式熱源并存轉變,尤其是可再生能源和未利用能源。不同形式不同品位的熱源集成必將引起系統能量變化。能源總線系統是集成化規?;瘧脜^域內可再生能源及未利用能源的多源多用戶能源系統。本文針對能源總線系統相對常規分散系統而言特有的多源多用戶特征進行系統混水和熱回收過程的變分析,將能源總線系統抽象為一系列工作在高溫熱源和低溫熱源之間的勞倫茲循環的集成,通過建立能源總線系統與常規分散系統的理想熱力學模型,找到能源總線系統混水和熱回收過程變的規律及影響因素。結果表明:系統的變化與各子系統低溫熱源進出口溫度、高溫熱源進口溫度以及高低溫熱源質量流量比相關,不同的設計參數會導致混水過程能量發生增加或者減小,亦或不變。通過分析得到熱回收過程影響源側總線熱量變化的相關參數并找到熱量變化規律,并得到最佳總線供水溫度TEBS1的確定方法。
能源總線系統;能源規劃;勞倫茲模型;熱回收;

能源總線系統實質是由一系列制冷制熱循環系統集合而成的冷熱量交換系統。將實際制冷制熱循環系統抽象為工作于一定高溫熱源和低溫熱源之間的逆卡諾循環??紤]熱源流體與冷源流體進出口溫度會隨著吸熱放熱過程而改變,理想循環的熱源都具有一定的比熱容(也不是無限大),因此,將能源總線系統視為工作在一系列變溫熱源組成的理想循環(即勞倫茲循環)中的冷熱量交換系統。
對夏季制冷工況進行理論分析。理想能源總線系統夏季循環可視為工作在總線的高溫熱源TEBSm和不同低溫熱源Tlmi之間的一系列勞倫茲循環。能源總線系統與常規分散能源系統的理想熱力學模型的對比,見圖1、圖2。其中,總線中水的高溫熱源TEBSm為多源混合熱源,即由不同高溫熱源Thmi組合而成。多源混合過程存在流體摻混,流體摻混過程帶來的能量變化直接影響能源總線系統運行和設計,下面對熱源混合過程中能量在數量與質量上的變化進行分析。

圖1 能源總線系統制冷工況理想熱力學模型Fig.1 Ideal thermodynamic model of the energy bus system in cooling mode

圖2 常規系統制冷工況理想熱力學模型(基準模型)Fig.2 Ideal thermodynamic model of the conventional system in cooling mode

2.1 EBS制冷循環能量平衡計算模型
夏季制冷循環的能量平衡計算模型見圖3。設定:區域i夏季制冷循環過程低溫熱源溫度由Tli1變化到 Tli2,常規系統區域i的高溫熱源溫度由Thi1變化到Thi2,能源總線系統熱源溫度由TEBS1變化到TEBS2。系統運行環境溫度T0。則有:

圖3 制冷循環能量平衡模型Fig.3 Refrigeration cycle energy balance model
QNi+Wi=QKi
(1)
(2)
(3)
(4)
勞倫茲循環溫度之間的關系為[17]:
(5)
(6)
(7)
式中:C1、C2分別為兩個熱源流體的比熱容;Tlm、Thm、TEBSm分別為低溫熱源、高溫熱源以及總線熱源的熱力學平均溫度。
根據高溫熱源與低溫熱源溫度計算常規系統與能源總線系統勞倫茲循環制冷系數ε1:
(8)
(9)


圖4 制冷循環平衡模型Fig.4 Exergy balance model of refrigeration cycle

ExQNi+∑Li=Wi+ExQKi
(10)
(11)
(12)
(13)


(14)

(15)



已知 Th21≠Th11,當Th21=Th11時,源側溫度相同,不存在混合變化,即ΔW1=0 。令Th21>Th11,即(Th21-Th11)>0,則有:


根據公式(15)分析能量相對變化ΔW1%的正負與大小,令n=2。
ΔW1%=
(16)
選定變量為τ1、τ2、φ1,分析公式(16),設定Tl11=Tl21=273+12=285K,Tl12=Tl22=273+7=280K,Th11=293K,Th21=305K,即兩個系統制冷循環低溫熱源進出口溫度Tl1、Tl2相同時,分析不同φ1,τ1,φ2,τ2條件下,源側進水溫度293 K和305 K混合后系統循環相對功耗變化量,此時的ΔW1%是φ1,τ1,τ2的函數(φ2=1-φ1),即ΔW1%=f(φ1,τ1,τ2)。
設定τ1、τ2的變化范圍為[0.8,1.0],φ1的變化范圍為[0.1,0.9]。
計算結果見圖5。圖中可以看出,ΔW1%max=3.71%,ΔW1%min=-3.63%。功率變化趨勢證明前面對于能量損失定性分析的正確。

圖5 制冷工況高溫熱源側混水過程能量相對變化(切片φ1)Fig.5 Relative energy change in water mixing of high temperature heat source side in cooling mode (Cut φ1)



表1 制冷工況混水能量相對變化極值函數擬合結果
(17)
設定能源總線系統總線熱源溫度由TEBS1變化到TEBS2i或TEBS2j;有n1個區域進行制冷循環,低溫熱源溫度分別由Tli1變化到 Tli2,常規系統區域i的高溫熱源溫度由Thi1變化到Thi2;有n2個區域進行制熱循環,高溫熱源溫度分別由Thj1變化到Thj2,常規系統區域j的低溫熱源溫度由Tlj1變化到 Tlj2;系統運行環境溫度T0;設定高低溫熱源流體比熱C相等。設定外界溫度T0,此時采用常規熱泵系統的i區域中,Thi1=T0;采用常規熱泵系統的j區域中,Tlj1=T0。QNi、QKj為各區域冷熱負荷,設定δ為全部區域總冷、熱負荷之比。

同樣設定全部i區域 Tli1=285 K,Tli2=280 K,τi=1,全部j區域Thj2=318K,Thj1=313K,τj=1。可以得到:
能源總線系統能耗WEBS與總線供水溫度TEBS1、區域冷、熱負荷比例δ相關聯,見圖6。當確定了區域的總冷、熱負荷比例δ之后,對應室外溫度T0,可以從圖中確定更節約輸入功率的總線水溫度TEBS1。
δ>0.88時,總線放熱量大于吸熱量,WEBS隨著TEBS1升高而增加;δ=0.88時,總線內冷熱平衡,WEBS與TEBS1大小不相關;δ<0.88時,總線吸熱量大于放熱量,WEBS隨著TEBS1升高而減少。

圖6 供水溫度和區域冷、熱負荷比例對EBS能耗的影響Fig.6 Influence of supply water temperature and ratio of regional cold load and heat load on EBS energy consumption

[1]王培培,龍惟定. 小型能源總線系統全年動態熱力性能仿真分析[J].制冷學報,2015,36(2): 59-64. (WANG Peipei, LONG Weiding. Numerical analyses on dynamic thermal performance of small energy bus system[J]. Journal of Refrigeration,2015, 36(2):59-64.)
[2]王培培,龍惟定,白瑋.能源總線系統研究—半集中式區域供冷供熱系統[J].湖南大學學報(自然科學版),2009, 36(12):137-141. (WANG Peipei, LONG Weiding. Study on energy bus system-semi-central DHC [J]. Journal of Hunan University (Natural Sciences),2009,36 (12):137-141.)
[3]Wang P P, Long W D. Research on energy consumotion of regional distributed heat pump energy bus system [J]. Advanced Materials Research, 2012, 374-377: 425-429.
[4]Phetteplace G, Sullivan W. Performance of a hybrid GCHP system[J]. ASHRAE transactions, 1998, 104(1): 763-770.
[5]Chiasson A D, Spitler J D, Rees S J, et al. A model for simulating the performance of a Pavement Heating System as a Supplemental heat rejecter with closed loop ground source heat pump systems[J]. ASME Journal of Solar Energy Engineering, 2000, 122:183-191.
[6]Chiasson A D, Spitler J D, Rees S J, et al. A model for simulating the performance of a shallow pond as a supplemental heat rejecter with closed loop ground source heat pump systems[J]. ASHRAE Transactions, 2000, 106(2): 107-121.
[7]Shawn Alex Hern. Design of an experimental facility for hybrid ground source heat pump systems[D].Oklahoma: Oklahoma State University, 2004.
[8]林俊,胡映寧,李助軍. 混和型地源熱泵系統運行特性試驗研究[J].太陽能學報, 2007, 28(11):1206-1212. (LIN Jun, HU Yingning, LI Zhujun. Study on compound ground source heat pump system[J]. Acta Energlae Solaris Sinica, 2007, 28(11):1206-1212.)
[9]Hackela S, Pertzbornb A. Effective design and operation of hybrid ground-source heat pumps: Three case studies[J]. Energy and Buildings, 2011, 43(12): 3497-3504.
[10] 龍激波,裴清清. 水環熱泵空調系統在夏熱冬暖地區應用經濟分析[J].建筑熱能通風空調,2004,.23(6):45-48. (LONG Jibo, PEI Qingqing. The economy analysis of WLHP air-conditioning system in hot summer and warm winter zone[J]. Building Energy & Environment, 2004,23 (6):45-48.)
[11] 張志強,姜益強,姚楊,等. 水環VRF空調系統及其工程應用[J]. 制冷空調與電力機械, 2006, 27(4):59-61. (ZHANG Zhiqiang, JIANG Yiqiang, YAO Yang, et al. Water loop VRV air conditioning system and its engineering applications[J]. Refrigeration Air Conditioning & Electric Power Machinery, 2006, 27(4): 59-61.)
[12] 黃倩,章學來,梁峻. 水環熱泵—空氣源熱泵—熱泵型熱水機組復合空調系統的工程應用實例分析[J].制冷空調與電力機械, 2008, 29(3): 42-45.(HUANG Qian,ZHANG Xuelai, LIANG Jun. Application analysis of the air conditioning systems composed water-loop heat pump, air source heat pump and water-water heat pump [J]. Refrigeration Air Conditioning & Electric Power Machinery, 2008, 29(3): 42-45.)
[13] 劉天偉,杜塏.水環熱泵空調系統應用于綜合辦公建筑的節能性研究[J].暖通空調, 2010, 40(3): 63-67.(LIU Tianwei, DU Kai. Research on the energy saving of water loop heat pump system applied to office buildings[J]. Heating Ventilating & Air Conditioning, 2010, 40(3): 63-67.)
[14] 孫婷婷. 水環多聯式熱泵空調系統運行特性研究[D]. 哈爾濱: 哈爾濱工業大學, 2012.
[15] 許霞. 地埋管地源水環熱泵空調系統工程設計[J].暖通空調, 2013, 43(1):46-50. (XU Xia. Analysis and engineering application of water-loop heat pump air-conditioning system[J]. Heating Ventilating & Air Conditioning, 2013, 43(1):46-50.)
[16] 萬鑫, 翁政軍.水環熱泵空調系統分析及應用[J]. 建筑技術, 2015, 46(10):898-900. (WAN Xin, WENG Zhengjun. Analysis and engineering application of water-loop heat pump air-conditioning system[J]. Architecture Technology, 2015, 46(10):898-900.)
[17] 馬一太,田華,劉春濤,等.制冷與熱泵產品的能效標準研究和循環熱力學完善度的分析[M].北京:科學出版社,2012.
About the corresponding author
Wang Peipei, female, Ph. D., School of Mechanical Engineering, Tongji University, +86 13916459060, E-mail: wwwangwangaaa@163.com. Research fields: district energy planning, low carbon building and energy-saving building.
Analyses of Exergy Change in Multi Heat Source Water Mixing and Heat Recovery Process of Energy Bus System
Wang Peipei1Long Weiding2
(1. School of Mechanical Engineering, Tongji University, Shanghai, 200092, China; 2. College of Engineering in Germany, Tongji University, Shanghai, 200092, China)
In the internet era of energy, district heating and cooling system will change from a single form of energy to the various forms of energy, especially renewable energy and untapped energy. Integration of different grades of heat sources will cause system energy change. The energy bus system is a multi-source and multi-user thermal energy system that can make integration of renewable energy sources or untapped energy sources in large scale for district heating and cooling. This paper focus on analysis of exergy change in multi-source water mixing and heat recovering process of energy bus system comparing with the conventional system. The energy bus system can be modeled as integration of a series of Lorenz cycles. Through the theoretical analysis of the ideal thermodynamic model of energy bus systems and conventional distributed systems, exergy change law and its influencing factors in multi-source water mixing process and heat recovering process of energy bus system are analyzed. The results show that the inlet and outlet temperatures of each subsystem low temperature heat sources、inlet temperatures of high temperature heat sources、the mass flow ratio of low temperature heat sources to high temperature heat sources affect exergy change of multi-source system. Different design parameters can cause the energy to increase or decrease, or unchanged. In this paper, heat recovering process of energy bus system is also analyzed theoretically, and the related parameters which affect the heat change of the bus side are obtained and the heat variation law is found, also the way to get the optimum bus water temperatureTEBS1.
energy bus system; energy planning; Lorenz model; heat recovery; exergy
0253- 4339(2016) 04- 0106- 06
10.3969/j.issn.0253- 4339.2016.04.106
2016年3月16日
TU831
A
簡介王培培,女,博士,同濟大學機械與能源工程學院,13916459060,E-mail: wwwangwangaaa@163.com。研究方向:區域能源規劃及低碳節能建筑。