金劍,趙慶
(上海市第一人民醫院寶山分院,上海200940)
?
川芎素對結直腸癌Lovo細胞生長的體內外抑制作用及機制
金劍,趙慶
(上海市第一人民醫院寶山分院,上海200940)
目的觀察川芎素在體內外對人結直腸癌Lovo細胞生長的抑制作用,并探討其機制。方法 將Lovo細胞分為兩組,觀察組分別與終濃度為0.125、0.25、0.5、1.0 mg/mL川芎素共培養,對照組不加川芎素。MTT法測定細胞吸光度值,計算細胞活力指數;流式細胞術檢測細胞周期和凋亡細胞,計算細胞凋亡率;將14只皮下接種Lovo細胞的裸鼠隨機分兩組各7只,觀察組靜脈注射0.5 mg/mL的川芎素50 μL,對照組靜脈注射等量生理鹽水,隔日給藥7次,測量給藥前后腫瘤體積。采用Western blot法檢測Lovo細胞及裸鼠腫瘤組織中的Bcl-2及pro-Caspase3。結果 觀察組分別與終濃度0.125、0.25、0.5、1.0 mg/mL川芎素共培養24 h后,其細胞活力指數分別為81.23±6.58、75.69±6.34、62.18±3.29、58.39±2.69,G1期細胞比例減少、S期細胞比例增加(P均<0.05),細胞凋亡率增加(P<0.05);與對照組比較,觀察組各時點荷瘤裸鼠腫瘤體積均減小(P均<0.05);觀察組Lovo細胞及裸鼠腫瘤組織中的Bcl-2及pro-Caspase3相對表達量較對照組均降低(P均<0.05)。結論 川芎素可抑制Bcl-2的表達、激活Caspase-3進而促進凋亡,最終抑制Lovo細胞的體內外生長。
結直腸癌;川芎素;Lovo細胞;細胞凋亡;B淋巴細胞瘤-2基因;半胱氨酸的天冬氨酸蛋白水解酶
中藥是我國的特色治療方式之一,目前已有多種中藥制劑獲批用于常規手段無效時的腫瘤治療[1~3]。川芎素廣泛用于心腦血管疾病的治療,近年來其抗腫瘤活性成為研究的熱點[4,5]。川芎素對人結直腸癌是否具有抑制作用,目前尚不明確。2015年5月~2016年5月,我們在體內外觀察了川芎素對結直腸癌Lovo細胞的抑制作用,并探討其可能的機制。
1.1材料川芎素(阿魏酸鈉)成都制藥一廠生產,100 mg/支,工作濃度100 mg/mL,人結直腸癌Lovo細胞購自中科院細胞庫,RPMI 1640培養基購自GIBCO公司;AnnexinⅤ-FITC/PI試劑盒購自南京凱基公司,鼠抗人pro-Caspase3單克隆抗體、鼠抗人Bcl-2單克隆抗體購自Santa公司;SPF級裸鼠購自上海實驗動物中心。
1.2實驗方法
1.2.1細胞培養與分組處理37 ℃、5% CO2下將Lovo細胞于含10%小牛血清的RPMI 1640培養基培養,將對數生長期的細胞分為兩組。觀察組分別與終濃度為0.125、0.25、0.5、1.0 mg/mL川芎素共培養,對照組不加川芎素。
1.2.2Lovo細胞活力觀察采用MTT法。將對數生長期的細胞制成1×105/mL的細胞懸液,以100 μL/孔接種96孔板,分組處理同1.2.1。培養24 h每孔加入5 mg/mL的MTT 20 μL,孵育6 h每孔加入20%的SDS 50 μL/孔,過夜,測定570 nm吸光度(A)值。細胞活力指數=(觀察組A570/對照組A570)×100。
1.2.3Lovo細胞周期檢測取對數生長期Lovo細胞,分組處理同1.2.1。培養24 h后以70%冰乙醇固定細胞,4 ℃碘化丙啶避光染色30 min,用FACS-Calibur檢測細胞周期。
1.2.4Lovo細胞凋亡檢測取對數生長期的Lovo細胞,分組處理同1.2.1。分別于培養6、12、24 h,以3 000 μL 1×緩沖液[100 mmol/L HEPES(pH 7.4),1.4 mmol/L NaCl,25 mmol/L CaCl2]懸浮細胞,調整細胞密度為1×106/mL。取100 μL細胞懸液到流式管,加入5 μL AnnexinV-FITC和10 μL PI(20 μg/mL),避光孵育20 min,加入400 μL PBS后用FACSCalibur檢測凋亡細胞,計算細胞凋亡率。
1.2.5川芎素體內抑瘤作用觀察取裸鼠14只,于其左腋下靠背部皮下注射Lovo細胞懸液100 μL。10 d后待腫瘤體積至約100 mm3,隨機將裸鼠分2組各7只。觀察組靜脈注射0.5 mg/mL的川芎素50 μL,對照組靜脈注射等量生理鹽水,隔日給藥7次。給藥前及給藥后每隔2 d測量裸鼠瘤體長徑(L)和短徑(W)。腫瘤體積(mm3)=1/2W2×L。
1.2.6Lovo細胞及腫瘤組織Bcl-2、pro-Caspase3檢測采用Western blot法。取對數生長期Lovo細胞隨機分為兩組,觀察組與終濃度1 mg/mL的川芎素共培養,對照組不處理。收集培養24 h后的細胞,并分離兩組裸鼠腫瘤組織;抽提蛋白,SDS-PAGE電泳后轉PVDF膜,5% BSA封閉;加入1∶4 000稀釋的鼠抗人Bcl-2單抗或1∶5 000稀釋鼠抗人pro-Caspase3單抗,以1∶2 000稀釋的鼠抗人β-actin作內參, 4 ℃孵育過夜;加1∶2 000稀釋的HRP標記的二抗,室溫孵育1 h;洗膜,檢測并掃描,以目的條帶與內參條帶的光密度比值作為目的蛋白的相對表達量。
2.1川芎素對Lovo細胞活力的影響觀察組分別與終濃度為0.125、0.25、0.5、1.0 mg/mL川芎素共培養24 h后,其細胞活力指數分別為81.23±6.58、75.69±6.34、62.18±3.29、58.39±2.69。終濃度0.125 mg/mL與終濃度0.5、1.0 mg/mL的細胞活力指數比較,P均<0.05。其他濃度間比較,無統計學意義。
2.2川芎素對Lovo細胞周期的影響見表1。

表1 兩組Lovo細胞的細胞周期比較
注:與對照組比較,*P<0.05,#P<0.01。
2.3川芎素對Lovo細胞凋亡的影響見表2。

表2 兩組Lovo細胞凋亡率比較
注:與對照組比較,*P<0.05,#P<0.01;與同濃度前一時點比較,△P<0.05。
2.4川芎素體內抗瘤效應對照組腫瘤生長曲線急促,而觀察組腫瘤生長曲線較緩和,見圖1。

圖1 兩組裸鼠的腫瘤生長曲線
2.5川芎素對Lovo細胞及裸鼠腫瘤組織Bcl-2、pro-Caspase3表達的影響見表3。

表3 兩組Lovo細胞及裸鼠腫瘤組織Bcl-2、pro-Caspase3相對表達量比較
注:與對照組比較,*P<0.05。
目前,川芎素已廣泛用于治療腦血管病、冠心病、白細胞和血小板減少癥等疾病[6]。川芎素藥理作用復雜,研究表明其具有抗氧化及抑制血栓形成等效果[7],還有報道川芎素能夠抑制氧化導致的平滑肌細胞增殖,但是川芎素和腫瘤細胞生長的關系研究較少[8,9]。
本研究結果發現,隔日瘤內注射0.5 mg/mL川芎素治療荷Lovo細胞豚鼠,7次用藥后,與對照組比較,其腫瘤體積明顯縮小。這表明Lovo細胞的生長能被川芎素抑制,與本研究MTT實驗結果相互印證。G1/S期和G2/M期是細胞周期兩個重要檢測點,在此期能夠發現DNA的損傷甚至突變,阻滯受損的細胞于相應位點上并進行修復DNA,只有DNA修復完好后,接下來的細胞周期事件才能順序進行;如修復不能完成,則會引發細胞凋亡[10~12]。本研究結果顯示,與對照組比較,觀察組Lovo細胞經不同濃度川芎素作用24 h后,G1期細胞比例減少顯著,S期細胞呈明顯堆積,且細胞凋亡率增加。表明川芎素既能阻滯細胞于周期當中,又能引發細胞凋亡。
作為細胞凋亡的通路之一,線粒體途徑中有與凋亡相關的蛋白被線粒體釋放,整個過程由Bcl-2家族的蛋白調控[13]。凋亡抑制蛋白與誘導蛋白都是Bcl-2家族成員,Bcl-2是凋亡抑制蛋白,抗癌藥物的敏感性受其表達水平的影響。Caspase依賴性凋亡的執行者是Caspase3,其由胞質中的pro-Caspase3剪切而來,核酸內切酶CAD進而被激活,發生染色質聚集、DNA降解等生物學效應。本研究結果發現,川芎素能夠降低Bcl-2及pro-Caspase3水平,凋亡抑制可被Bcl-2低水平表達解除,降低pro-Caspase3后Caspase3活化水平升高,最終引起細胞凋亡。
綜上所述,川芎素阻滯了人結直腸癌Lovo細胞在S期,并抑制Bcl-2的表達,Caspase3被激活,細胞轉入凋亡步驟,在體內外抑制Lovo細胞的生長。
[1] Hu HY, Song ZY, Deng L, et al. Immuno-regulatory effect of evodi amine in mice of various germlines[J]. J Exp Hematol, 2008,16(4):886-891.
[2] Shyu KG, Lin S, Lee CC, et al. Evodi amine inhibits in vitro angio genesis: implication for antitumor genicity[J]. Life Sci, 2006,78(19):2234-2243.
[3] Kan SF, Yu CH, Pu HF, et al. Anti-proliferative effects of evodi amine on human prostate cancer cell lines DU145 and PC3[J]. J Cell Biochem, 2007,101(1):44-56.
[4] Liao CH, Pan SL, Guh JH, et al. Antitumor mechanism of evodi amine, a constituent from Chinese herb Evodi aefructus, in human multiple drug resistant breast cancer NCI/ADR-RES cells in vitro and in vivo[J]. Carcinogenesis, 2005,26(5):968-975.
[5] Yang J, Wu LJ, Tashiro S, et al. Nitric oxide activated by p38 and NF-kappa B facilitates apoptosis and cell cycle arrest under oxidative stress in evodi amine-treated human melanoma A375-S2 cells[J]. Free Radic Res, 2008,42(1):1-11.
[6] Ogasawara M, Matsubara T, Suzuki H. Inhibitory effects of evodi amine on in vitro invasion and experimental lung metastasis of murine colon cancer cells[J]. Biol Pharm Bull, 2001,24(8):917-920.
[7] Chakrabarty S, Wang H. Emerging therapeutic targets for human colon calno flla[J]. Emerg Therap Targ,1998,2(2):195-211.
[8] Zhou BB, Elledge SJ. The DNA damage response:putting check points in perspective[J]. Nature, 2000,408(6811):433-439.
[9] Stewart ZA, Westfall MD, Pietenpol JA. Cell-cycle dysregulation and anticancer therapy[J]. Trends Pharmacol Sci, 2003, 24(3):139-145.
[10] Kan SF, Huang WJ, Lin LC, et al. Inhibitory effects of evodi amine on the growth of human prostate cancer cell line LNCaP[J]. Int J Cancer, 2004,110(5):641-651.
[11] Zhang Y, Zhang QH, Wu LJ, et al. Atypical apoptosis in L929 cells induced by evodi amine isolated from Evodi arutaecarpa[J]. J Asian Nat Prod Res, 2004,6(1):19-27.
[12] Saelens X, Festjens N, Vande WL, et al. Toxic proteins released from mitochondria in cell death[J]. Oncogene,2004,23 (16):2861-2874.
[13] Patel MP, Masood A, Patel PS, et al. Targeting the Bcl-2[J]. Curr Opin Oncol, 2009,21(6):516-523.
Inhibitory effect of sodium ferlate on proliferation of human colon cancer Lovo cells in vitro and in vivo
JINJian,ZHAOQing
(BaoshanBranchofShanghaiGeneralHospital,Shanghai200940,China)
ObjectiveTo investigate in vitro and in vivo inhibitory effects of sodium ferlate on the proliferation of human colon cancer Lovo cells as well as the relevant mechanism. Methods Lovo cells were divided into two groups: the observation group which was co-cultured with sodium ferlate with the final concentrations of 0.125, 0.25, 0.5 and 1.0 mg/mL, and the control group without any sodium ferlate. The optical density of Lovo cells was determined by MTT. The vitality index was calculated. The effects of sodium ferlate on the cell cycle and apoptosis of Lovo cells were analyzed by flow cytometry. Fourteen nude mice bearing Lovo cells were divided into two groups: the observation group which was injected with 50 μL sodium ferlate with the concentration of 0.5 mg/mL, and the control group which was injected by the same amount of normal saline, every other day, for 7 times and the tumor volume was measured before and after medication. The expression of Bcl-2 and pro-Caspase-3 in Lovo cells and tumor tissues was determined by Western blotting. Results The cell vitality indexes were respectively 81.23±6.58, 75.69±6.34, 62.18±3.29 and 58.39±2.69 in the observation group after 24-hour treatment of sodium ferlate with the final concentrations of 0.125, 0.25, 0.5 and 1.0 mg/mL. The cell proportion ratio of G1phase was decreased, and was decreased in the S phase (allP<0.05), meanwhile, the cell apoptosis rate was increased (P<0.05). Compared with the control group, the tumor volume decreased in the tumor-bearing nude mice of the observation group (allP<0.05); and the expression of Bcl-2 and pro-Caspase-3 was decreased in the Lovo cells and tumor tissues of nude mice in the observation group (allP<0.05).ConclusionSodium ferlate may inhibit the expression of Bcl-2, activate caspase-3 and promote the apoptosis, and thus inhibit the proliferation of Lovo cells.
colon carcinoma; sodium ferlate; Lovo cells; apoptosis; B-cell lymphoma-2 gene; Caspase-3
上海市衛生和計劃生育委員會科研課題(20144Y01116)。
金劍(1977-),男,碩士研究生,主治醫師,主要研究方向為消化系統疾病的機制。E-mail: mydecline@126.com
10.3969/j.issn.1002-266X.2016.34.003
R966
A
1002-266X(2016)34-0008-03
2016-06-29)