999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一階歐拉型型無界時滯中立型微分方程解的振動準則

2016-10-13 21:24:46王媛申建華
數碼設計 2016年1期
關鍵詞:振動研究

王媛,申建華

?

一階歐拉型型無界時滯中立型微分方程解的振動準則

王媛1,申建華2

(1. 中南林業科技大學理學院,湖南長沙 410004; 2. 杭州師范大學理學院,浙江杭州 310036)

研究了歐拉型無界時滯中立型微分方程解的振動性,現有文獻只對c=0, n=1時的情況進行了討論,應用時會有局限。為了拓寬此方程的應用范圍,將條件拓寬至n的一般情形,通過建立其相應的“特征方程”,得到了所有解振動的充分必要條件,并由此出發,建立了一些顯式充分條件,所得結果改進和推廣了原有文獻的結論。

振動性;中立型微分方程;無界時滯;歐拉型

1 研究意義

數學中所研究的函數是反映客觀現實世界運動過程中量與量之間的一種關系。在大量的實際問題中會遇到一些復雜的運動過程,這導致無法直接寫出反映運動規律的量與量之間的關系,但建立起這些變量和它們的導數之間的關系卻比較容易。這一事實正是現代應用數學研究人員和工程人員應用微分方程解決實際問題的理論依據。微分方程在物理學、力學、控制、經濟學和管理科學等實際問題中具有廣泛的應用。近年來,隨著機器人的快速發展,微分方程在人工智能和數據挖掘,尤其是深度學習等領域具有越來越重要的作用,因此研究微分方程的解具有理論和實際的雙重意義。

關于常系數和常時滯的中立型微分方程

[, (1.1)

解的振動性的研究已取得了相當豐富的結果[1-6], 這里,特別地,Kulenovic, Ladas等[3]根據其特征方程,證明了下述定理。

定理A 方程(1.1)的所有解振動當且僅當

. (1.2)

近年來,已有一些文獻[7-9]研究了下列具有變系數和變時滯的中立型微分方程

安冉[10]研究了下列歐拉型無界時滯微分方程

定理B方程(1.4)的每一個解振動當且僅當

在文[10]中,作者也給出了方程(1.4)解振動的一些顯示充分條件。

本文中,究竟下列具有歐拉形式的無界時滯中立型微分方程

為了推導出微分方程(1.6)解的振動準則,先給出其解以及解為振動的定義。

2 引理

引理2.1[11]設是區間上連續可導的正值函數,如果存在常數和使得對于充分大的成立,.

(2.2)

由(2.1),可得

(3)由(2)可知,

因此,引理證畢。

3 主要結論

在這一節,將應用前面的引理去建立方程(1.6)的所有解振動的一個充分必要條件,并由此出發,建立方程(1.6)的所有解振動的一此顯示充分條件。

. (3.1)

必要性:反設方程(1.6)不是所有的解都振動,那么方程(1.6)至少存在一個非振動解。不妨假設是方程的一個最終正解,最終負解時的證明相似,故略. 令

由引理2.3,則最終有

再令

(3.3)

, (3.5)

定義集合

.

由(3.4)和(3.6)可得

或者

此表明

由引理2.1和引理2.2,有

注3.2 在文[10]中,作者研究了非中立型方程(1.4)解的振動性,得到該方程的所有解振動的充分必要條件(1.5)。因此,上述定理3.1將[10]中的結論推廣到了中立型微分方程(1.6).

定理3.3設

, (3.8)

那么方程(1.6)的所有解都振動。

證明:(3.1)等價于

根據定理3.1 ,只須證明當(3.8)成立時,有(3.9)成立即可. 令

那么方程(1.6)的所有解都振動。因此,條件(3.8)改進了(3.10)。

那么方程(1.6)的所有解都振動。

因此

因此有(3.9)成立,利用定理3.1得方程(1.6)的所有解都振動. 定理證畢。

4 例子

下面舉例說明定理的應用??紤]一階中立型時滯微分方程:

考慮一階中立型時滯微分方程

通過計算,發現定理3.5的所有條件是滿足的。因此方程(4.2)的所有解都振動。

[1] Erbe,L.H., Q.K. Kong and B.G. Zhang. Oscillation Theory of Functional Differential Equations [M].Oxford: Clarendon Press, 1991.

[2] GyI. and G. Ladas. Oscillation Theory of Delay Differential Equations with Applications [M].Oxford: Clarendon Press, 1991.

[3] Kulenovic, M.R.S., G. Ladas and A. Meimaridou. Necessary and sufficient condition for oscillation of neutraldifferential equation [J]. J. Austral. Math. Soc. Ser. B, 28(1987):362-375.

[4] Zhang, B.G. Oscillation of first order neutral functional differential equatons [J]. J. Math. Anal. Appl., 139 (1989):311-318.

[5] Jiang, Z.W. Oscillation of first order neutral differential equations [J]. J. Math. Anal.Appl., 196 (1995) :800-813.

[7] Das, P. Oscillation criteria for odd order neutral equations [J]. J. Math. Anal. Appl.,188(1994) :245-257.

[8] Wang, Q.R.Oscillation criteria for first-order neutral differential equations [J]. Appl. Math. Lett.,15 (2002):1025-1033.

[9] Berezansky, L. and E. Braverman. Oscillation criteria for a linear neutral differential equations [J].J. Math. Anal. Appl., 286}(2003) :601-617.

[10] Dahiya, R.S. and T. Candan. Oscillation behavior of arbitrary order neutral differential equations [J]. Appl. Math. Lett., 17 (2004):953-958.

[11] An Ran. Oscillation criteria of solutions for delay differential equations [J].Mathematics in Practice and Theory, 30(3) (2000):310-314.

[12] Guan, K.Z. and J.H. Shen. Oscillation of first order neutral differential equations of Euler form [J]. Analysis, 27(2007):61-7

Oscillation of First-order Neutral Differential Equation of EulerType with Unbounded Delays

WANG Yuan1, SHEN Jianhua2

(1. Institute of Mathematics and Physics, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; 2. Institute of Mathematics and Physics, Hangzhou Normal University, Hangzhou310036, Zhejiang, China)

We have researched the oscillation of solution of first order neutral differential equation of Euler type, which is with unbounded delays in this paper. The existing references have only discussed the equation when c=0 and n=1, but in practice, a lot of problems don't meet this condition. To break the limitation, we extent the equation to n. At first, we introduce its characteristic equation and establish a sufficient and necessary condition for the oscillation of all solutions of the equation. Then some explicit oscillation results are presented. This result is an extension of the existing works, which is significant in both theory and practice.

oscillation; neutral equation; unbounded delay; Euler type.

1672-9129(2016)01-00016-06

O175

A

2016-05-06;

2016-05-24。

國家自然科學基金青年項目NO. 11201490。

王媛(1968-- ),女,湖南永州人,副教授,碩士研究生,研究方向:常微分方程;申建華(1961-- ),男,教授,博士研究生,研究方向:常微分方程。

猜你喜歡
振動研究
振動的思考
科學大眾(2023年17期)2023-10-26 07:39:14
噴水推進高速艇尾部振動響應分析
FMS與YBT相關性的實證研究
2020年國內翻譯研究述評
遼代千人邑研究述論
This “Singing Highway”plays music
視錯覺在平面設計中的應用與研究
科技傳播(2019年22期)2020-01-14 03:06:54
EMA伺服控制系統研究
振動攪拌 震動創新
中國公路(2017年18期)2018-01-23 03:00:38
中立型Emden-Fowler微分方程的振動性
主站蜘蛛池模板: 久久久久久久97| 国产18在线播放| 成人年鲁鲁在线观看视频| 亚洲第一av网站| 99九九成人免费视频精品| 日本精品影院| 色偷偷综合网| 亚洲欧美另类日本| 久久香蕉国产线看精品| 国产成人福利在线视老湿机| 亚洲全网成人资源在线观看| 欧美伊人色综合久久天天| 亚洲一区色| 茄子视频毛片免费观看| 国产精品999在线| 91麻豆国产精品91久久久| 国产成人禁片在线观看| 在线观看的黄网| 亚洲人成网线在线播放va| 欧美在线视频a| 亚洲综合中文字幕国产精品欧美| 精品久久蜜桃| 日韩av在线直播| 精品无码国产自产野外拍在线| 国产视频大全| 久久精品无码一区二区国产区| 亚洲第一色视频| 欧美色香蕉| a毛片免费在线观看| 2024av在线无码中文最新| 九九热在线视频| 亚洲美女操| 全裸无码专区| 国产美女无遮挡免费视频| 麻豆精品在线播放| 狠狠做深爱婷婷久久一区| AV在线天堂进入| 亚洲天堂成人| 久久精品亚洲热综合一区二区| 天天操天天噜| 日韩精品免费一线在线观看| 久久不卡精品| 一本大道东京热无码av| 在线a视频免费观看| 亚洲AⅤ永久无码精品毛片| 久久一日本道色综合久久| 美女免费黄网站| 青草精品视频| 日韩av高清无码一区二区三区| 91久久夜色精品国产网站| 国内精自视频品线一二区| 国产精品人成在线播放| 美女啪啪无遮挡| 91久久青青草原精品国产| 亚洲国产成人麻豆精品| 国产精品香蕉在线| 亚洲中文精品久久久久久不卡| 亚洲人成色在线观看| 成人国产一区二区三区| 欧美一道本| 亚洲无限乱码| 自拍亚洲欧美精品| 97国产在线播放| 综合亚洲色图| 欧美亚洲国产日韩电影在线| 亚洲 成人国产| 国产波多野结衣中文在线播放 | 欧美亚洲中文精品三区| 狠狠色噜噜狠狠狠狠色综合久| 伊人91在线| 国产专区综合另类日韩一区| www.国产福利| 在线观看精品自拍视频| 天天爽免费视频| 青青青草国产| 日韩成人在线一区二区| 天天爽免费视频| 成人一级黄色毛片| www.狠狠| 国产午夜一级毛片| 91精品专区国产盗摄| 伦伦影院精品一区|