999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

施肥對麥田土壤可溶性有機氮的影響

2016-09-21 02:34:12李俊良楊學(xué)云周建斌
生態(tài)學(xué)報 2016年14期

梁 斌,李俊良,楊學(xué)云,周建斌,3, *

1 青島農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,青島 266109  2 西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院,楊凌 712100  3 農(nóng)業(yè)部西北植物營養(yǎng)與農(nóng)業(yè)環(huán)境重點實驗室,楊凌 712100

?

施肥對麥田土壤可溶性有機氮的影響

梁斌1,2,李俊良1,楊學(xué)云2,周建斌2,3, *

1 青島農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,青島2661092 西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院,楊凌7121003 農(nóng)業(yè)部西北植物營養(yǎng)與農(nóng)業(yè)環(huán)境重點實驗室,楊凌712100

利用長期定位試驗,研究施肥和小麥生長對土壤可溶性有機氮(EON)的影響。長期不同施肥土壤包括不施肥(No-F)、施用化肥(NPK)和有機肥與化肥配施(MNPK)3種。EON含量范圍為7.5—29.3 kg/hm2,No-F、NPK和MNPK土壤中EON分別占可溶性總氮的40%、56%和56%。長期有機肥與化肥配施顯著提高0—15 cm土層EON含量,但對30 cm以下土層EON含量無影響。在小麥開花期,可溶性有機氮的含量及其相對含量顯著高于拔節(jié)期和收獲期。雖然施用氮肥對當(dāng)季EON含量無顯著影響,但同位素示蹤微區(qū)試驗表明,土壤耕層(0—15 cm)中仍有0.4%—2.8%的可溶性有機氮來源于當(dāng)季施入的肥料氮。可見,化學(xué)氮肥向可溶性有機氮的轉(zhuǎn)化緩慢,但農(nóng)田土壤中可溶性有機氮含量與礦質(zhì)態(tài)氮含量相當(dāng),發(fā)生淋溶損失的風(fēng)險大。

長期定位施肥試驗;小麥生長期;淋溶;15N標記

土壤可溶性有機氮(Extractable organic N, EON)雖僅占土壤全氮的很小部分,但近年來的研究表明,它是土壤氮庫中最活躍的組分之一,對土壤氮素循環(huán)影響很大[1]。在林地土壤中可溶性有機氮占可溶性總氮的比例可高達90%以上[2],土壤EON與土壤氮素遷移和供應(yīng)的關(guān)系不可忽視[3]。可溶性有機氮含量與土壤氮素礦化和土壤微生物量氮顯著相關(guān)[4],研究表明土壤不溶性有機氮向EON的轉(zhuǎn)化是土壤中有機氮礦化的限制因子[3]。可溶性有機氮除了是土壤微生物氮素的重要來源之外[5],一些低分子量的EON可以直接或者通過菌根被植物吸收利用[3]。在一些降雨量大或灌溉地區(qū),可溶性有機氮的淋溶損失是氮素損失的重要途徑之一[6-7],在林地生態(tài)系統(tǒng)中EON是氮素損失的主要形態(tài)[8]。綜上說明EON在土壤氮素組成、轉(zhuǎn)化、供應(yīng)和損失方面都具有重要的意義。

土壤可溶性有機氮含量及其行為易受土地利用方式、施肥狀況和種植作物等因素影響。目前對農(nóng)田土壤可溶性有機氮含量的影響因素研究相對較少,且得出的一些結(jié)果不盡一致。比如,Currie等[9]研究表明,施用化學(xué)氮肥提高土壤中EON含量,McDowell等[10]也得出類似的結(jié)論。但Vestgarden等[11]卻發(fā)現(xiàn),連續(xù)九年施用化學(xué)氮肥(每年30 kg/hm2)使土壤溶解性有機氮含量顯著降低;Gundersen等[12]報告指出,施用氮肥并不影響溶解性有機氮的含量。因此,有必要進一步研究施肥對農(nóng)田土壤中可溶性有機氮的影響。在林地中,可溶性有機氮是氮素損失的主要形態(tài)[8],那么在農(nóng)田中可溶性有機氮的淋溶情況也是值得關(guān)注的問題。因為有機氮的淋溶不但關(guān)系到氮肥的利用狀況,還可能帶來一系列生態(tài)環(huán)境問題。

本研究利用已經(jīng)進行了19a的田間試驗,研究了長期不同施肥處理對麥田土壤耕層及0—100 cm剖面可溶性有機氮的影響以及短期內(nèi)氮肥向可溶性有機氮轉(zhuǎn)化情況,揭示施肥對土壤有機氮含量及其淋溶特性的影響,同時闡明了小麥不同生長階段對土壤表層EON含量的影響,以期為完善土壤氮素循環(huán)理論、有效調(diào)控土壤氮素供應(yīng)提供依據(jù)。

1 材料與方法

1.1試驗設(shè)計

長期定位試驗開始于1990年,種植制度為小麥單作,小麥收獲后休閑至下季小麥種植。設(shè)對照(No-F,不施肥)、施用NPK化肥(NPK)、有機肥配施NPK化肥(MNPK)3個處理。其中氮肥為尿素,磷肥為過磷酸鈣,鉀肥為氯化鉀。NPK處理施用量分別為N 135.0 kg/hm2、P 47.1 kg/hm2、K 56 kg/hm2。MNPK處理中過磷酸鈣和氯化鉀的施用量與NPK處理相同,氮肥用量與NPK處理相同,其中70%的氮來源于牛廄肥,30%的氮由尿素提供,各施肥處理的肥料均于小麥播種前一次性施用。小區(qū)面積為 399 m2(21 m×19 m)。土壤經(jīng)19年不同施肥處理后其0—20 cm土層基本理化性狀見表1。土壤質(zhì)地為重壤土,土壤顆粒<0.002 mm、0.002—0.02 mm和 >0.02 mm的粘粒、粉粒和砂粒含量分別為168、516、316 g/kg。

2009年10月小麥種植施肥前,在每處理土壤內(nèi)用PVC管設(shè)置氮同位素示蹤微區(qū)試驗,PVC管長63 cm,直徑為24.5 cm,其中60 cm打入土中,3 cm留在地表之上。微區(qū)設(shè)施氮肥(+N)和不施氮肥(CK)兩處理,重復(fù)3次,其中施入的氮肥為15N標記的尿素(豐度為19.58%)。在小麥種植前將所有處理土柱內(nèi)0—15 cm土層土壤取出施入微區(qū)以外相同的磷、鉀肥,在+N處理中按165 kg N/hm2的量加入標記尿素,CK處理不加氮肥,施肥后回填到原來PVC管中。于2009年10月18日播種,播種量為每PVC管30粒,小麥出苗后間苗至20株。

表1 長期不同施肥處理0—20 cm土層理化性狀

以上數(shù)據(jù)為平均值(標準差)(n=3);同一行不同小寫字母表示差異達顯著水平

1.2土壤樣品的采集

于小麥拔節(jié)期(2010年3月26日)、開花期(2010年5月4日)和收獲期(2010年6月15日)在微區(qū)試驗處理內(nèi)采集土壤樣品(0—15 cm),利用土鉆在每土柱內(nèi)采集混合樣,過2 mm篩,測定其中可溶性總氮、礦質(zhì)氮含量及其15N豐度。于小麥收獲期在各長期定位試驗處理中按10 cm一層采集0—100 cm土壤剖面樣品,測定土壤剖面可溶性有機氮和礦質(zhì)氮含量。

圖1 小麥不同生長階段土壤中(0—15 cm)來源于當(dāng)季氮肥的可溶性有機氮百分比Fig.1 Percent of soil extractable organic N derived from 15N-labeled fertilizer in soils (0—15 cm) under long-term different fertilization managements during stem elongation (ET), flowering (FT), and harvest (HT) stage of wheat

1.3樣品測定與數(shù)據(jù)分析

土壤樣品采集過篩后,用0.5 mol/L硫酸鉀浸提(土水比1∶4),浸提液中可溶性總氮用過硫酸鉀氧化—紫外分光光度計比色法測定,礦質(zhì)氮利用流動分析儀測定,可溶性有機氮含量為可溶性總氮和礦質(zhì)氮含量之差,可溶性有機氮相對含量是指可溶性有機氮占可溶性總氮含量的百分比。微區(qū)試驗處理中一部分土壤浸提液經(jīng)過硫酸鉀氧化后擴散[13],測定其中可溶性總氮的15N豐度,另一部分浸提液直接擴散,測定其中礦質(zhì)態(tài)氮的15N豐度。擴散后的15N豐度用質(zhì)譜儀測定,樣品15N豐度測定由美國加利福尼亞大學(xué)戴維斯分校穩(wěn)定同位素研究所完成。可溶性有機氮中的15N含量為可溶性總氮和礦質(zhì)態(tài)氮中15N含量之差,來源于肥料的可溶性有機氮百分比用Ndff(%)表示,施入肥料向可溶性有機氮轉(zhuǎn)化率用Con(%)表示,計算公式如下:

Ndff(%)=可溶性有機氮15N原子百分超/肥料15N豐度

(1)

Con(%)=可溶性有機氮含量×Ndff/施氮量

(2)

圖表中的數(shù)據(jù),用SAS Version 8.1 for Windows 作方差分析,若差異顯著,采用LSD 法進行多重比較。

2 結(jié)果與分析

2.1施肥對土壤可溶性有機氮含量的影響

土壤可溶性有機氮的含量為7.5—29.3 kg/hm2(表2),占全氮的比例為0.6%—0.8%,其中來源于當(dāng)季施入肥料氮的比例為0.5%—2.8%(圖1),僅占施入氮肥的0.03%—0.24%。長期不同施肥顯著影響EON含量(P< 0.01)(表3)。與No-F相比,長期施用化肥使EON顯著增加34%—89%,平均增幅為55%(表2)。長期有機無機配施土壤可溶性有機氮含量范圍為12.2—25.6 kg/hm2,平均為19.0 kg/hm2,顯著高于NPK處理(表2)。MNPK和NPK土壤EON相對含量分別為40%—81%和39%—81%,平均皆為56%(圖2)。No-F土壤可溶性有機氮的相對含量為40%,顯著低于NPK和MNPK土壤(圖2)。

表2土壤耕層(0—15 cm)可溶性有機氮含量(kg/hm2)

Table 2Soil extractable organic N content in 0—15 cm layer of soils under long-term different fertilization managements at different growth stage of wheat

施氮處理Ntreatments采樣時Samplingtimes不施肥Nofertilization施用化肥ApplicationofinorganicNPKfertilizer有機肥配施化肥CombinedapplicationofinorganicNPKandmanure不施氮拔節(jié)期7.5(1.7)Ac12.4(1.7)Bb14.0(1.9)CaNoapplicationofN開花期9.2(1.1)Ac17.4(1.7)Ab25.6(1.1)Aa收獲期9.2(0.6)Ac12.4(1.3)Bb16.1(0.1)Ba平均8.6c14.0b18.5a施氮拔節(jié)期8.4(0.7)Ab12.8(0.9)Ba12.2(2.4)BaApplicationofN開花期10.6(3.5)Ac15.3(1.3)Ab29.3(4.5)Aa收獲期10.5(0.7)Ac15.1(0.2)Ab17.0(1.7)Ba平均9.9c14.4b19.5a

表中數(shù)據(jù)為平均值(標準差)(n=3); 同一行不同小寫字母和同一列不同大寫字母表示差異在0.05水平顯著

表3 不同施肥和生長時期對土壤可溶性有機氮影響的F檢驗

2.2小麥不同生長階段可溶性有機氮含量

3個采樣時期中,開花期EON含量最高,此時期NPK和MNPK土壤EON含量較拔節(jié)期分別提高48%和82%。小麥生長對No-F土壤EON含量無顯著影響(表2)。生長時期顯著影響EON相對含量。小麥開花期可溶性有機氮相對含量最高,各處理范圍為38%—81%,平均為64%;小麥收獲期可溶性有機氮相對含量平均為50%;拔節(jié)期可溶性有機氮的相對含量最低,各處理平均為39%(圖2)。

圖2 長期不同施肥和小麥不同生長時期土壤耕層(0—15 cm)可溶性有機氮相對含量Fig.2 Effect of long-term fertilization and growth stage of wheat on percent of soil extractable organic N in soil extractable N

2.3可溶性有機氮在土壤0—100 cm剖面的分布

長期不同施肥主要影響0—30 cm土層EON含量,對30 cm以下土層EON含量影響不大(圖3)。No-F、NPK和MNPK土壤CK處理0—100 cm土壤剖面EON累積量分別為43.1、51.6、55.2 kg/hm2(圖4);MNPK和NPK土壤中EON累積量無顯著差異,兩者均顯著高于No-F土壤。在種植前未施氮肥處理不同土壤40—100 cm累積的可溶性有機氮分別占可溶性總氮的43%—50%。種植前施用氮肥使土壤EON增加14%—34%,No-F、NPK和MNPK土壤分別達到58.1、67.2、63.2 kg/hm2(圖4)。

圖3 長期不同施肥土壤不施氮(a)和施氮(b)處理0—100 cm剖面可溶性有機氮含量Fig.3 Soil extractable organic N content in 0—100 cm layers of soils under long-term different fertilization managements

圖4 長期不同施肥土壤可溶性有機氮在0—100 cm剖面的累積Fig.4 Accumulative soil extractable organic N in 0—100 cm layers of soils under long-term different fertilization managements

3 討論

3.1土壤可溶性有機氮的含量

在本試驗中,長期不同施肥土壤耕層EON含量為8—27 kg/hm2,No-F,NPK和MNPK 3種施肥處理的土壤EON占可溶性總氮的比例分別為13%—67%,38%—82%和44%—57%。Jensen等[14]研究表明,在沙土和沙壤土可溶性有機氮含量范圍分別為:8—20、15—30 kg/hm2。Mcneill等[15]的研究中可溶性有機氮占可溶性總氮的比例為55%—66%。可見,農(nóng)田土壤中可溶性有機氮含量與礦質(zhì)態(tài)氮含量相當(dāng),是農(nóng)田土壤中一個重要的氮庫。

3.2長期不同施肥對土壤可溶性有機氮的影響

與長期施用化肥相比,長期有機肥配施化肥顯著提高土壤EON含量以及可溶性有機氮占可溶性總氮的百分比,其他學(xué)者也得出相同的結(jié)論[26-27]。增加的可溶性有機氮一方面來源于施入的有機肥[28],另一方面來源于增加的作物根系脫落物等殘體[18-19]。另外,長期有機無機配施土壤中微生物量氮是施用化肥土壤的1.3倍,微生物量的增加也可提高EON含量[25]。

3.3短期施用氮肥對土壤可溶性有機氮的影響

施入土壤的氮素除被作物吸收、微生物固持和損失外,還有一部分可在生物和非生物因素下轉(zhuǎn)化為可溶性有機氮。在林地酸性土壤中,Dail等[29]研究指出,在對照、輻射滅菌和高溫滅菌土壤中分別大約有30%、40%和55%所加入的硝態(tài)氮轉(zhuǎn)化為土壤可溶性有機氮。Compton等[30]和Perakis等[31]也得出,硝態(tài)氮加入土壤之后,有很大一部分迅速地轉(zhuǎn)化為土壤可溶性有機氮。Davidson等[32]研究發(fā)現(xiàn),硝態(tài)氮加入土壤之后,在鐵錳等化合物的作用下轉(zhuǎn)化為亞硝態(tài)氮,而亞硝態(tài)氮與土壤有機物結(jié)合轉(zhuǎn)化為可溶性有機氮。但其他學(xué)者[33-34]通過試驗,并沒有發(fā)現(xiàn)大量硝態(tài)氮向可溶性有機氮的轉(zhuǎn)化。在本研究中,各小麥生長時期各土壤中有0.5%—2.8%的可溶性有機氮來源于當(dāng)季施用的肥料氮,占當(dāng)季施入氮肥的0.5%以下。說明化學(xué)氮肥向可溶性有機氮的轉(zhuǎn)化比較緩慢,沒有發(fā)生快速大量轉(zhuǎn)化的情況。肥料氮在施肥當(dāng)季轉(zhuǎn)化為土壤可溶性有機氮的機理包括:(1)在肥料氮施入土壤之后,通過土壤微生物的固持與轉(zhuǎn)化,部分肥料氮以可溶性有機氮的形態(tài)釋放到土壤中[1];(2)施入的肥料氮可通過作物吸收及其分泌分泌物轉(zhuǎn)化為土壤可溶性有機氮[35]。

3.4小麥生長階段對土壤可溶性有機氮的影響

作物的生長對土壤可溶性有機氮含量有顯著的影響[36]。本研究中,在小麥開花期土壤可溶性有機氮含量和占可溶性有機氮的比例皆為最高。這說明旺盛生長的作物增加土壤可溶性有機氮的含量,其他學(xué)者也得出相同的結(jié)論[37-38]。這是因為在旺盛生長階段,作物根系、根系脫落物和土壤微生物量都較高所致。研究表明,在作物開花期根系脫落物的碳可達根系碳含量的兩倍[39]。一方面,根系的分泌物及脫落物本身含有大量的可溶性有機氮;另一方面,較多的有機碳為土壤微生物提供了大量的能源物質(zhì),從而增加了土壤微生物的數(shù)量,而微生物數(shù)量與土壤可溶性有機氮含量呈顯著正相關(guān)關(guān)系[20,37]。

3.5可溶性有機氮在土壤剖面的分布

長期有機肥配施化肥顯著提高0—15 cm土層可溶性有機氮含量,但對20 cm以下土壤可溶性有機氮含量無影響,MNPK土壤40—100 cm剖面中累積的EON與No-F和NPK土壤相當(dāng)。說明長期有機肥配施化肥僅增加土壤耕層可溶性有機氮含量。但Dyke等[40]指出,與單施化肥相比,施用有機肥使更多的可溶性有機氮淋溶到土壤下層。結(jié)果不同的原因可能與Dyke等[40]的研究中有機肥的施用量更高(每年有機肥提供的氮量為240 kg/hm2)和試驗進行的時間更長(156a)有關(guān)。在種植前未施氮肥處理不同土壤40—100 cm累積的可溶性有機氮分別占可溶性總氮的43%—50%。Madou等[41]研究表明,土壤中通過淋溶損失的氮素中土壤可溶性有機氮占17%—32%,說明可溶性有機氮的淋溶損失是氮素損失的重要途徑之一。Van Kessel等[7]也報道指出,可溶性有機氮是農(nóng)田土壤中氮素淋溶損失的重要形態(tài),尤其是在降雨量氮或灌溉地區(qū)。因此,在評價農(nóng)田氮素淋溶損失時,應(yīng)該考慮可溶性有機氮的損失。

[1]Haynes R J. Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Advances in Agronomy, 2005, 85: 221-268.

[2]Hannam K D, Prescott C E. Soluble organic nitrogen in forests and adjacent clearcuts in British Columbia, Canada. Canadian Journal of Forest Research, 2003, 33(9): 1709-1718.

[3]Jones D L, Shannon D, V Murphy D, Farrar J. Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils. Soil Biology and Biochemistry, 2004, 36(5): 749-756.

[4]Zhong Z K, Makeschin F. Soluble organic nitrogen in temperate forest soils. Soil Biology and Biochemistry, 2003, 35(2): 333-338.

[5]Hart S C, Nason G E, Myrold D D, Perry D A. Dynamics of gross nitrogen transformation in an old-growth forest: the carbon connection. Ecology, 1994, 75(4): 880-891.

[6]張宏威, 康凌云, 梁斌, 陳清, 李俊良, 嚴正娟. 長期大量施肥增加設(shè)施菜田土壤可溶性有機氮淋溶風(fēng)險. 農(nóng)業(yè)工程學(xué)報, 2013, 29(21): 99-107.

[7]Van Kessel C, Clough T, van Groenigen J W. Dissolved organic nitrogen: an overlooked pathway of nitrogen loss from agricultural systems?. Journal Of Environmental Quality, 2009, 38(2): 393-401.

[8]Smolander A, Kitunen V, M?lk?nen E. Dissolved soil organic nitrogen and carbon in a Norway spruce stand and an adjacent clear-cut. Biology and Fertility of Soils, 2001, 33(3): 190-196.

[9]Currie W S, Aber J D, McDowell W H, Boone R D, Magill A H. Vertical transport of dissolved organic C and N under long-term N amendments in pine and hardwood forests. Biogeochemistry, 1996, 35(3): 471-505.

[10]McDowell W H, Currie W S, Aber J D, Yano Y. Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soils. Water, Air, and Soil Pollution, 1998, 105(1/2): 175-182.

[11]Vestgarden L, Abrhamsen G, Stuanes A O. Soil solution response to nitrogen and magnesium application in a Scots pine forest. Soil Science Society of America Journal, 2001, 65(6): 1812-1823.

[12]Gundersen P, Callesen I, De Vries W. Nitrate leaching in forest ecosystems is related to forest floor C/N ratios. Environmental Pollution, 1998, 102(1): 403-407.

[14]Jensen L S, Mueller T, Magid J, Nielsen N E. Temporal variation of C and N mineralization, microbial biomass and extractable organic pools in soil after oilseed rape straw incorporation in the field. Soil Biology and Biochemistry, 1997, 29(7): 1043-1055.

[15]McNeill A M, Sparling G P, Murphy D V, Braunberger P, Fillery I R P. Changes in extractable and microbial C, N, and P in a Western Australian wheatbelt soil following simulated summer rainfall. Australian Journal of Soil Research, 1998, 36(5): 841-854.

[16]Fang Y T, Zhu W X, Gundersen P, Mo J M, Zhou G Y, Yoh M. Large loss of dissolved organic nitrogen from nitrogen-saturated forests in subtropical China. Ecosystems, 2009, 12(1): 33-45.

[17]Dijkstra F A, West J B, Hobbie S E, Reich P B, Trost J. Plant diversity, CO2, and N influence inorganic and organic N leaching in grasslands. Ecology, 2007, 88(2): 490-500.

[18]Embacher A, Zsolnay A, Gattinger A, Munch J C. The dynamics of water extractable organic matter (WEOM) in common arable topsoils: II. Influence of mineral and combined mineral and manure fertilization in a Haplic Chernozem. Geoderma, 2008, 148(1): 63-69.

[19]叢日環(huán). 小麥-玉米輪作體系長期施肥下農(nóng)田土壤碳氮相互作用關(guān)系研究 [D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2012.

[21]Zhong W H, Cai Z C, Zhang H. Effects of long-term application of inorganic fertilizers on biochemical properties of a rice-planting red soil. Pedosphere, 2007, 17(4): 419-428.

[22]葛體達, 唐東梅, 宋世威, 黃丹楓. 不同園藝生產(chǎn)系統(tǒng)土壤可溶性有機氮差異. 應(yīng)用生態(tài)學(xué)報, 2009, 20(2): 331-336.

[23]Zak D R, Pregitzer K S, Burton A J, Edwards I P, Kellner H. Microbial responses to a changing environment: implications for the future functioning of terrestrial ecosystems. Fungal Ecology, 2011, 4(6): 386-395.

[24]McDowell W H, Magill A H, Aitkenhead-Peterson J A, Aber J D, Merriam J L, Kaushal S S. Effects of chronic nitrogen amendment on dissolved organic matter and inorganic nitrogen in soil solution. Forest Ecology and Management, 2004, 196(1): 29-41.

[25]Liang B, Yang X Y, Murphy D V, He X H, Zhou J B. Fate of 15 N-labeled fertilizer in soils under dryland agriculture after 19 years of different fertilizations. Biology and Fertility of Soils, 2013, 49(8): 977-986.

[26]Ros G H, Hoffland E, van Kessel C, Temminghoff E J M. Extractable and dissolved soil organic nitrogen---A quantitative assessment. Soil Biology and Biochemistry, 2009, 41(6): 1029-1039.

[27]宋震震, 李絮花, 李娟, 林治安, 趙秉強. 有機肥和化肥長期施用對土壤活性有機氮組分及酶活性的影響. 植物營養(yǎng)與肥料學(xué)報, 2014, 20(3): 525-533.

[28]趙滿興, 周建斌, 陳竹君, 楊絨. 有機肥中可溶性有機碳、氮含量及其特性. 生態(tài)學(xué)報, 2007, 27(1): 297-403.

[29]Dail D B, Davidson E A, Chorover J. Rapid abiotic transformation of nitrate in an acid forest soil. Biogeochemistry, 2001, 54(2): 131-146.

[30]Compton J E, Boone R D. Soil nitrogen transformations and the role of light fraction organic matter in forest soils. Soil Biology and Biochemistry, 2002, 34(7): 933-943.

[31]Perakis S S, Hedin L O. Fluxes and fates of nitrogen in soil of an unpolluted old-growth temperate forest, southern Chile. Ecology, 2001, 82(8): 2245-2260.

[32]Davidson E A, Chorover J, Dail D B. A mechanism of abiotic immobilization of nitrate in forest ecosystems: the ferrous wheel hypothesis. Global Change Biology, 2003, 9(2): 228-236.

[33]Colman B P, Fierer N, Schimel J P. Abiotic nitrate incorporation, anaerobic microsites, and the ferrous wheel. Biogeochemistry, 2008, 91(2/3): 223-227.

[34]Davidson E A, Dail D B, Chorover J. Iron interference in the quantification of nitrate in soil extracts and its effect on hypothesized abiotic immobilization of nitrate. Biogeochemistry, 2008, 90(1): 65-73.

[35]Zsolnay A. Dissolved organic matter: artefacts, definitions, and functions. Geoderma, 2003, 113(3/4): 187-209.

[36]Murphy D V, Macdonald A J, Stockdale E A, Goulding K W T, Fortune S, Gaunt J L, Poulton P R, Wakefield J A, Webster C P, Wilmer W S. Soluble organic nitrogen in agricultural soils. Biology and Fertility of Soils, 2000, 30(5/6): 374-387.

[37]Liang B, Yang X Y, He X H, Zhou J B. Effects of 17-year fertilization on soil microbial biomass C and N and soluble organic C and N in loessial soil during maize growth. Biology and Fertility of Soils, 2011, 47(2): 121-128.

[38]Murphy D V, Stockdale E A, Poulton P R, Willison T W, Goulding K W T. Seasonal dynamics of carbon and nitrogen pools and fluxes under continuous arable and ley-arable rotations in a temperate environment. European Journal of Soil Science, 2007, 58(6): 1410-1424.

[39]Amos B, Walters D T. Maize root biomass and net rhizodeposited carbon: an analysis of the literature. Soil Science Society of America Journal, 2006, 70(5): 1489-1503.

[40]Dyke G V, George B J, Johnston A E, Poulton P R, Todd A D. The Broadbalk Wheat Experiment 1968—1978: yields and plant nutrients in crops grown continuously and in rotation//Rothamsted Experimental Station Report for 1982, part 2. Harpenden: Rothamsted Experimental Station,. 1983: 5-44.

[41]Madou M C, Haynes R J. Soluble organic matter and microbial biomass C and N in soils under pasture and arable management and the leaching of organic C, N and nitrate in a lysimeter study. Applied Soil Ecology, 2006, 34(2/3): 160-167.

Effect of fertilization on extractable organic nitrogen in wheat monoculture cropping systems

LIANG Bin1,2, LI Junliang1, YANG Xueyun2, ZHOU Jianbin2,3,*

1CollegeofResourcesandEnvironmentalSciences,QingdaoAgricultureUniversity,Qingdao266109,China2CollegeofResourcesandEnvironmentalSciences,NorthwestAgricultureandForestryUniversity,Yangling712100,China3KeyLaboratoryofPlantNutritionandtheAgri-EnvironmentinNorthwestChina,MinistryofAgriculture,Yangling712100,China

Soil extractable organic nitrogen (SON) is an important nutrient pool involved in N transformations, and the content and conversion of SON are affected by fertilization practices. However, many gaps remain in our understanding of SON, especially in agricultural soil. The effects of long-term (1990—2009) fertilization on SON at elongation, flowering, and harvest stages in wheat were evaluated in a loess soil (Eum-Orthic Anthrosol) in northwestern China. The treatments included no fertilization (No-F), application of inorganic NPK fertilizer (NPK), and combined application of inorganic NPK and manure (MNPK). Using15N tracer techniques,15N-labeled urea (165 kg N/hm2) was applied to microplots within each treatment to investigate the effect of short-term addition of N on content of SON during the wheat-growing season in wheat monoculture cropping systems. The SON content was 7.5—29.3 kg/hm2and accounted for 40%, 56%, and 56% of total extractable N in No-F, NPK, and MNPK, respectively. Compared with No-F, application of inorganic NPK fertilizer increased SON content significantly (55% on average) in the 0—15 cm soil layer. Soil extractable organic N content in the MNPK treatment was significantly higher (by 32%—35%) than that in the NPK treatment in the 0—15 cm layer. Long-term fertilization had no effect on SON content below 30 cm. SON was highest at flowering and was significantly higher during flowering than at the elongation stage in NPK and MNPK (by 48% and 82%, respectively). In relation to No-F, fertilization treatments increased the SON significantly in the 0—100 cm soil profile, SON was 43.1, 51.6, 55.2 kg/hm2in No-F, NPK, and MNPK, respectively. Addition of N had no significant effect on SON content in the 0—15 cm soil layer during the same growing season; however, 0.4%—2.8% of SON was derived from the15N-labeled fertilizer applied before seeding, representing 0.03%—0.24% of the fertilizer, and short-term addition of N increased SON in the 0—100 cm soil profile by 35%, 30%, and 14% in No-F, NPK, and MNPK, respectively. We conclude that the conversion of inorganic N to extractable organic N was slow. However, long-term fertilization increased SON content in the topsoil, and SON is a significant nitrogen pool in agriculture soils.

long-term fertilization; wheat growth stage; leaching;15N labeling

國家自然科學(xué)基金資助項目(31372137, 31401947)

2014-12-12; 網(wǎng)絡(luò)出版日期:2015-10-30

Corresponding author.E-mail: jbzhou@nwsuaf.edu.cn

10.5846/stxb201412122482

梁斌,李俊良,楊學(xué)云,周建斌.施肥對麥田土壤可溶性有機氮的影響.生態(tài)學(xué)報,2016,36(14):4430-4437.

Liang B, Li J L, Yang X Y, Zhou J B.Effect of fertilization on extractable organic nitrogen in wheat monoculture cropping systems.Acta Ecologica Sinica,2016,36(14):4430-4437.

主站蜘蛛池模板: 国产精品不卡永久免费| AV不卡在线永久免费观看| 97人人做人人爽香蕉精品| 54pao国产成人免费视频| 国产午夜福利在线小视频| 国产成人亚洲无码淙合青草| 九九久久精品免费观看| 在线免费亚洲无码视频| 91啦中文字幕| 国产高清无码麻豆精品| 亚洲无码四虎黄色网站| 国产福利2021最新在线观看| 精品国产91爱| 午夜精品福利影院| 亚洲第一成人在线| 日韩在线欧美在线| 精久久久久无码区中文字幕| 色悠久久综合| 69国产精品视频免费| 天堂亚洲网| 国产免费久久精品99re不卡 | 亚洲色图狠狠干| 在线观看国产精美视频| 97se亚洲综合在线天天| 中文字幕波多野不卡一区| 中国毛片网| 全午夜免费一级毛片| 亚洲精品无码AⅤ片青青在线观看| 国产99视频在线| 亚洲高清资源| yy6080理论大片一级久久| 青青青国产视频手机| 一级香蕉视频在线观看| 久久亚洲国产最新网站| 99视频精品在线观看| 伊大人香蕉久久网欧美| 国产九九精品视频| 国产欧美另类| 欧美精品啪啪| 国产黄网永久免费| 热99re99首页精品亚洲五月天| 午夜爽爽视频| 婷婷午夜影院| 99久久国产精品无码| 日韩精品久久久久久久电影蜜臀| 国产精品一区二区无码免费看片| 午夜精品区| 色偷偷一区二区三区| 老司机午夜精品视频你懂的| 男人天堂亚洲天堂| 最新痴汉在线无码AV| 免费 国产 无码久久久| 97免费在线观看视频| 热99精品视频| 欧美在线网| 亚洲精品人成网线在线| 99爱视频精品免视看| 手机在线国产精品| 亚洲乱亚洲乱妇24p| 最新无码专区超级碰碰碰| 国产精品亚洲欧美日韩久久| 久久人人妻人人爽人人卡片av| 国产真实二区一区在线亚洲| 国产99热| 人妻精品久久无码区| 亚洲色图狠狠干| 免费啪啪网址| 毛片免费试看| AV在线麻免费观看网站| 国产对白刺激真实精品91| 国产激情影院| 亚洲伦理一区二区| 直接黄91麻豆网站| 亚洲激情区| 日韩精品成人网页视频在线| 色男人的天堂久久综合| 欧美亚洲国产精品第一页| 国产日本欧美在线观看| 99在线观看精品视频| 一级毛片在线播放免费观看| 亚洲综合在线最大成人| 欧美日韩亚洲国产|