999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

棉鈴蟲低齡幼蟲對花香揮發物的聯系性學習

2016-08-29 02:39:25胡晶晶原國輝李洋洋郭線茹郭帥帥李為爭
生態學報 2016年13期

胡晶晶,原國輝,李洋洋,郭線茹,王 瓊,郭帥帥,李為爭

河南農業大學植物保護學院, 鄭州 450002

?

棉鈴蟲低齡幼蟲對花香揮發物的聯系性學習

胡晶晶,原國輝,李洋洋,郭線茹,王瓊,郭帥帥,李為爭*

河南農業大學植物保護學院, 鄭州450002

鱗翅目昆蟲的寄主選擇主要是成蟲的任務,但幼蟲也可以精細調節取食部位。低齡幼蟲記憶一些與食物伴隨的化學信息能夠提高適合度。當幼蟲被迫離開寄主植物后,最好是搜索與此前取食過的寄主氣味相似的植物,以便節省寄主轉移的生理代謝成本。棉鈴蟲幼蟲嗜食作物花器,因此推測花香揮發物可以代表幼蟲食物的典型化學信息。采用人工飼料為無條件刺激,在條件化訓練開始時,使初孵幼蟲取食時暴露在7種花香揮發物下,隨后7 d逐日測試低齡幼蟲學習表現。結果發現,在7次測試中,苯乙醛選擇頻次有3次顯著多于對照,芳樟醇條件化組在2次測定中處理被選頻次顯著或極顯著多于對照,苯乙醇條件化組僅1次對處理選擇頻次顯著多于對照,其他4種揮發物無論訓練時間長短均不能造成嗅覺偏好性的改變,說明棉鈴蟲在取食過程中是選擇性采集食物關鍵化學信息。然而,無經歷組無論訓練時間如何均不對苯乙醛表現出嗅覺偏好性,證實氣味偏好性的改變并非生理性成熟所致。總之,和同種的成蟲以及若蟲期比較活潑的其他種類相比,棉鈴蟲低齡幼蟲嗅覺聯系性學習表現較差,并且嗅覺偏好性變化與條件化訓練時長沒有明確關系,結合棉鈴蟲的生態學習性討論了可能的原因。

棉鈴蟲;低齡幼蟲;花香揮發物;聯系性學習;選擇偏好性

聯系性學習是昆蟲在復雜多變的環境中適應的基本機制之一。當前聯系性學習行為的研究主要集中在成蟲階段,受學習調控的行為包括覓食、產卵寄主選擇、聚集、避敵甚至與交配有關的性信息素通訊等[1-6]。可能是由于成蟲遷移能力和幼蟲相比強得多,涉及的生命行為不僅僅是取食。鱗翅目的105種昆蟲大田統計資料表明,低齡幼蟲面臨著各種死亡因子的威脅,自然死亡率平均為66%—82%[7],但幼蟲也能通過近距離的擴散進行有限的逃避[8-10],例如?;页嵋苟闟podopteralittoralis幼蟲可以通過調整自身的取食位置,矯正母代雌成蟲在棉花植株上不適當的產卵位置選擇[10]。很顯然取食是低齡幼蟲期最關鍵的生命行為,如果低齡幼蟲在取食過程中能夠事先記住一些與食物伴隨的關鍵化學信息,則在因機械擾動、捕食未遂或干旱等被迫離開寄主植物后,有助于搜索與已適應的植物氣味相似的種類,從而降低寄主轉移后被迫重新調整代謝途徑而付出的生理代價[10]。弄清幼蟲聯系性學習的規律,有助于通過人為干預農業生態系統來強化這些發育階段自然死亡因子的效果,并為培育不易被幼蟲取食適應的作物品種提供參考依據。然而,目前幼蟲聯系性學習僅在海灰翅夜蛾[11]、蘋果蠹蛾Cydiapomonella[12]和黑腹果蠅Drosophilamelanogaster[13]中報道過,而經濟重要性很高的大部分農業害蟲還未見相關研究。

棉鈴蟲Helicoverpaarmigera是實夜蛾屬的一種多食性種類,低齡幼蟲嗜食許多農作物的花器[14],這些器官與營養生長部分的揮發性物質有較大的差異,前者以芳香族化合物和單萜類為主,后者以6個碳原子的綠葉氣味為主。此前本課題組以蔗糖溶液為無條件刺激研究了成蟲對2種關鍵花香氣味的聯系性學習,發現成蟲對苯乙醛的學習表現比乙酸苯甲酯更好,且外周感覺系統水平的改變不能解釋學習誘導的氣味偏好性變化[15]。棉鈴蟲幼蟲不能象成蟲一樣單獨依賴蔗糖等純化學物質生長發育。為此,作者使棉鈴蟲初孵幼蟲在人工飼料(無條件刺激)取食時,分別暴露于7種花香氣味下連續7 d,逐日取樣測試其學習表現;然后,為了判斷氣味偏好性的改變是生理性成熟還是聯系性學習造成的,測試了不同日齡的無經歷幼蟲對苯乙醛的偏好反應,期望弄清低齡幼蟲是否具有嗅覺聯系性學習能力,以及學習表現與同種成蟲相比的強弱。

1 材料與方法

1.1供試昆蟲

棉鈴蟲蛹購于河南濟源白云實業有限公司,放在室內人工氣候箱內飼養,飼養條件為日溫(28±2)℃,夜溫(26±2)℃,相對濕度(50±10)%,光周期16 L∶8 D。成蟲飼喂5%蔗糖溶液,幼蟲用麥胚基飼料連續飼養10代以上,在本試驗中該飼料也用作無條件刺激物。制備方法如下:將1400 mL蒸餾水煮沸并分成兩份,一份600 mL,另一份800 mL。第1份中加入3 g山梨酸并攪拌,完全溶解后加入150 g小麥胚芽粉、80 g黃豆粉和25 g烘焙酵母;第2份中加入20 g瓊脂、20 g蔗糖和40 g干酪素并攪拌均勻。隨后將二者混合,待溫度降至40℃左右時,加入3 g 維生素C和8g復合維生素,最終攪拌均勻并在4 ℃下保存。

1.2供試試劑

條件刺激為7種花香揮發物:乙酸苯甲酯、苯甲醛、苯乙醛、苯甲醇、β-苯乙醇、香葉醇和外消旋芳樟醇。苯甲醛、苯甲醇購于北京化學試劑公司;乙酸苯甲酯購于中國醫藥集團(上海)化學試劑公司,純度為95%;苯乙醛購買于Sigma-Aldrich Co Ltd.,純度為98%;β-苯乙醇、芳樟醇、香葉醇購于Fluka 化學試劑公司,分析純。上述花香揮發物各200μL分別注入10 mL玻璃瓶中,將煮沸后并在室溫下冷卻到60℃左右的2%瓊脂(Amresco,99%)膠液分裝到各個小瓶中(8 mL/瓶),迅速蓋緊瓶塞并搖勻,當瓶壁溫度與室溫接近時停止搖動使樣品凝固,制成0.5 cmID×0.5 cmH柱狀小塊,條件化之后的氣味偏好性測試仍然使用這些氣味源,另外還制備了空白瓊脂膠作為對照。

1.3學習訓練

收集棉鈴蟲卵放入人工氣候箱中,孵化條件同上。每日8:00. 和17:00. 各檢查一次孵化情況,獲得日齡整齊的幼蟲。每日18: 00. 取當日孵化個體隨機分配到兩個試驗組:(1)單獨US暴露組(US-only group):在14.0 cmID× 2.0 cmH培養皿底部鋪上濕濾紙,正中央放入3.0 cmL× 3.0 cmW× 1.5 cmH的飼料塊,每個飼料塊上部中央插放一支裝有瓊脂膠柱的1 mL離心管。小心挑取20頭初孵幼蟲放在飼料塊上,蓋上蓋子之后放入人工氣候箱;(2)條件化組(Conditioning group):操作同上,飼料塊上方離心管中放入不同花香揮發物制備的瓊脂膠柱,使幼蟲在花香氣味氛圍下取食24 h。本組又分為7個亞組,分別使用上述7種花香氣味作為條件刺激。不同處理組放在隔離環境中,很少發現訓練期間試蟲逃逸到培養皿外面的現象。

1.4氣味偏好性測定

為了克服情境依賴性學習現象,氣味偏好性測試所用裝置仍為14.0 cmID× 2.0 cmH的培養皿,且測試氣味源仍然使用和上述學習訓練相同的花香揮發物瓊脂膠柱和空白瓊脂膠柱進行配對。訓練后24 h進行第1次測試。測試在潔凈無味的暗室中進行,在底部鋪有濕濾紙的培養皿內,沿一條直徑的兩端分別放置花香揮發物瓊脂膠柱和空白瓊脂膠柱,然后由3人配合同時在每個培養皿中放入相應訓練的幼蟲5頭,蓋上蓋子后立刻放在1.5 W紅色LED燈泡下觀察。幼蟲在濕濾紙上爬行一段時間后,會移動到處理或對照瓊脂膠柱上。及時移除做出選擇反應的個體以便使社會性相互作用最小化,直到所有5頭幼蟲全部做出選擇為止。預試驗發現一般在10 min測試時間內所有個體均會做出選擇。測試結束后,試蟲返回相應處理環境中繼續學習訓練,但更換新的培養皿、濾紙、飼料塊和氣味源。24 h進行第2次測試,依此類推,直到訓練后第7天,以便確定訓練時長對學習表現的影響,該過程跨越了2個齡期。7種揮發物的條件化組每組累計測試50頭個體。

1.5不同日齡的無經歷組幼蟲對苯乙醛的趨性反應

在供試的7種花香揮發物中苯乙醛條件化效應最明顯。因此,測試了無經歷組幼蟲對苯乙醛 vs 空白瓊脂膠的偏好選擇反應,用來鑒別聯系性學習效應與生理性成熟。為了同條件化組測試對應,仍然跟蹤測試7 d。不同之處在于每批幼蟲僅測試1次,即將孵化當日的大量幼蟲放在人工飼料上飼養,24 h后挑取50頭進行第1次測定,48 h后另外挑取50頭進行第2次測定,依此類推。

1.6統計分析

采用SPSS 19.0統計軟件分析數據。每個處理組每次測試得到的是二項分布的頻次數據,采用Yate修正的2測驗來分析兩種氣味源被選擇頻次的差異。

2 結果與分析

2.1棉鈴蟲低齡幼蟲對7種花香揮發物的聯系性學習表現時相

棉鈴蟲低齡幼蟲經7種常見花香揮發物不同時間的條件化后在條件化氣味源和對照配對測試條件下的趨性反應結果見圖1,對應的2測驗見表1。

圖1 棉鈴蟲低齡幼蟲對花香揮發物-食物聯結聯系性學習表現的時相Fig.1 Temporal pattern of the associative learning performance of H. armigera early-instar larvae to several floral volatiles associated with the artificial diet

在7次測定中,苯乙醛條件化組第1天、第3天和第4天表現出對苯乙醛的顯著或極顯著偏好性(第1天:2= 6.63;第3天:2= 12.50;第4天:2= 5.78),尤其是第1天和第3天,選擇苯乙醛的百分率分別達到了70%和76%,芳樟醇條件化組在2次測定中處理被選頻次顯著或極顯著多于對照(第4天:2=4.50;第6天:2=10.58),苯乙醇條件化組僅有1次測定中對苯乙醇的選擇頻次顯著多于對照(第3天:2= 4.50)。無論經歷多長訓練時間,對苯甲醛、苯甲醇、乙酸苯甲酯和香葉醇均不會表現出顯著嗅覺偏好。另外,處理選擇百分率的變化趨勢與條件化時間長短沒有明顯關系,例如苯乙醛和苯乙醇條件化時第3天選擇處理的百分率最高,而芳樟醇條件化時則是第5天最高。

表1 不同花香揮發物不同條件化時間的棉鈴蟲低齡幼蟲氣味選擇頻次的卡方測驗Table 1 Chi-square test of the choice frequencies ofH.armigeraearly-instar larvae conditioned by seven floral volatiles with different conditioning times

2.2不同日齡的無經歷組幼蟲對苯乙醛的嗅覺偏好性

棉鈴蟲雌蛾對苯乙醛的學習表現強于對乙酸苯甲酯的學習表現[15],上述測試再次發現苯乙醛條件化組的棉鈴蟲低齡幼蟲對苯乙醛的選擇頻次顯著高于對照的次數最多。因此,進一步研究了無花香揮發物接觸經歷的棉鈴蟲低齡幼蟲在苯乙醛 vs CK配對條件下的嗅覺選擇反應,結果如圖2。無經歷組幼蟲無論24 h取食后經歷的時間長度如何,均沒有對苯乙醛表現出明顯的偏好,證實上述測試中氣味偏好性的改變并非生理性成熟所致。

圖2 不同日齡的無經歷組棉鈴蟲幼蟲對苯乙醛的氣味偏好性Fig.2 Olfactory preference of na?ve H. armigera larvae of different day-ages to phenylacetaldehyde

3 討論

自然界鱗翅目初孵幼蟲能量儲備有限[16],卻面臨著大量的威脅,如葉毛、葉蠟、堅硬組織、乳膠管、腺體、毒素、植物誘導防衛、多變的微棲境和生物致死因子等[7]。低齡幼蟲可以通過有限的擴散運動主動逃避這些嚴酷的條件[13, 17-18]。棉鈴蟲多在寄主花器或果實上取食,取食過程中如果能夠記憶某些關鍵花香揮發物,在被迫離開寄主植物后就更容易重新定殖到同一植物種類上,降低食物混合的負面影響[19]。每次訓練中條件刺激和無條件刺激的間隔(inter-stimulus interval)和相鄰訓練的間隔(inter-trial internal)嚴格控制,海灰翅夜蛾和黑腹果蠅幼蟲才有較好學習表現[7, 9]。然而,幼蟲野外取食環境始終彌散著寄主揮發物,這樣的條件下試蟲是否仍然會表現出良好學習能力尚不清楚。

選擇7種花香揮發物研究了棉鈴蟲低齡幼蟲的聯系性學習,這些揮發物在許多寄主植物花器的頂空揮發物中發現[20]。其中,棉鈴蟲的姊妹種煙青蟲H.assulta成蟲受開花期煙草花頂空揮發物中的外消旋芳樟醇引誘[21],在棉鈴蟲[5]、煙芽夜蛾Heliothisvirescens[22]、煙草天蛾Manducasexta[23]成蟲學習研究中使用過;煙芽夜蛾、棉鈴蟲和煙青蟲成蟲觸角存在對香葉醇反應最強的感覺神經元[24],該物質在煙芽夜蛾[6, 22]、海灰翅夜蛾[7, 25-26]和煙草天蛾[27]成蟲學習研究中使用過;夜蛾花香引誘劑的2種關鍵成分[28]苯乙醛和乙酸苯甲酯在棉鈴蟲[5, 15]和?;页嵋苟闧26]學習研究中使用過。棉鈴蟲初孵幼蟲僅涉及取食的行為需求,需要以食物本身作為無條件刺激,然而幼蟲不能像成蟲一樣依賴蔗糖溶液就能存活,自然寄主作為無條件刺激又難以避免寄主本身氣味的干擾,故采用人工飼料作為無條件刺激,這種飼料的整體揮發物當前尚未報道,但主要原料小麥胚芽粉、黃豆粉、烘焙酵母的主要揮發物成分已有報道。其中,小麥麩皮主要成分為揮發性很弱的脂肪酸類和一些酚酸、黃酮等[29],小麥全粉頂空揮發物成分主要是(E, E)-2,4-癸二烯醛(37.46%)和十二碳-2-烯醛(11.88%),黃豆粉頂空揮發物的主要成分是正己醇(24.77%)、正己醛(25.50%)、1-辛烯-3-醇(19.93%)和E-2-己烯醛(11.38%)[30],酵母浸膏去除作者分析明顯雜質后,重新計算的主要物質及相對含量是乙酸(38.66%)、吲哚(16.70%)和2-乙基己醇(12.22%)[31]。這些植物材料均不含有本試驗的7種花香揮發物,或者雖然痕量存在但不會顯著影響試驗結果。苯乙醛條件化組在7次測定中有3次對苯乙醛表現出顯著或極顯著偏好,芳樟醇條件化組在2次測定中對芳樟醇表現出顯著或極顯著偏好,苯乙醇條件化組僅1個案例對苯乙醇表現出顯著偏好,其他4種揮發物無論訓練多長時間嗅覺偏好性也不顯著改變,說明棉鈴蟲在取食過程中并非記憶所有揮發物信息,而是選擇性地采集一些關鍵信息,如各種顯花植物的花器中最普遍存在的苯乙醛。此外,棉鈴蟲低齡幼蟲有避開油腺取食的習性,大齡幼蟲則偏好到花器上取食[32],暗示著棉鈴蟲嗅覺偏好性可能隨著日齡而變化。以苯乙醛為代表性物質測試了低齡幼蟲嗅覺偏好性隨著日齡的變化,發現所有日齡的試蟲對苯乙醛均沒有顯著偏好,暗示著生理性成熟不會造成嗅覺偏好性改變,證實這種學習的本質是聯系性的,未來需要全程檢測整個幼蟲發育期氣味偏好性的變化情況。

然而,棉鈴蟲低齡幼蟲的聯系性學習表現較差,且與訓練時間長度關系不大。可能原因如下:(1)在物種水平上,學習發生在需要持續搜索寄主的蟲態[33]。若蟲期活躍的黃斑黑蟋蟀Gryllusbimaculatus、馬德拉蜚蠊Leucophaeamaderae等需要不斷探索食物源,具有極強嗅覺學習能力[34-35];相反,鱗翅目初孵幼蟲選擇取食位置的能力非常有限,很大程度上依賴成蟲產卵決策;(2)棉鈴蟲成蟲采集花蜜時對嗅覺的依賴性遠比味覺強,故表現出相對較強的嗅覺學習能力[3-5, 15],而味覺信息對于幼蟲食物的指示作用比嗅覺信息更可靠,因為幼蟲發育期大部分時間是在植物揮發物相似、但味覺信息差異較大的同一植株不同部位轉移為害的,未來需要采用呈味物質作為條件刺激研究其聯系性學習來證實。但尋找一種味覺系統能夠感知但呈行為學中性的味覺條件刺激并不容易,許多人類基本呈味物質本身對幼蟲取食選擇有較大的影響[36]。目前鱗翅目幼蟲聯系性學習僅在蘋果蠹蛾[12]和海灰翅夜蛾[11]中報道過,但只有蘋果蠹蛾研究的是味覺學習(條件刺激是糖精);(3)以往昆蟲學習的經典條件化步驟中,是將條件刺激與無條件刺激前配對進行若干次訓練,訓練間隔期被試置于不存在條件刺激和無條件刺激的潔凈空間中休息[25, 27, 37]。這種周期性的配對方式可能更容易使條件刺激成為無條件刺激的標志性信息。為了模擬自然生態環境,本試驗測試前和訓練過程中均沒有剝奪試蟲的食物,也會潛在削弱花香揮發物的信息指示功能。此前的昆蟲嗅覺學習的種間比較表明,食性雜、社會性、壽命長、體型大的種類學習能力更突出[2, 22]。學習的首要功能是使生物更好地適應多變的環境,某些種類盡管具有利用多種寄主植物的潛能,但在個體發育中如果不需要持續開拓食物資源,就不會有很強的學習表現。

[1]Dukas R. Evolutionary biology of insect learning. Annual Review of Entomology, 2008, 53(1): 145-160.

[2]Kandori I, Yamaki T. Reward and non-reward learning of flower colours in the butterflyByasaalcinous(Lepidoptera: Papilionidae). Naturwissenschaften, 2012, 99(9): 705-713.

[3]Cunningham J P, West S A, Wright D J. Learning in the nectar foraging behaviour ofHelicoverpaarmigera. Ecological Entomology, 1998, 23(4): 363-369.

[4]Cunningham J P, Jallow M F A, Wright D J, Zalucki M P. Learning in host selection inHelicoverpaarmigera(Hübner) (Lepidoptera: Noctuidae). Animal Behaviour, 1998, 55(1): 227-234.

[5]Cunningham J P, Moore C J, Zalucki M P, Cribb B W. Insect odour perception: recognition of odour components by flower foraging moths. Proceedings of the Royal Society Biological Sciences B: biological sciences, 2006, 273(1597): 2035-2040.

[6]Hartlieb E, Hansson B S, Anderson P. Sex or food? Appetetive learning of sex odors in a male moth. Naturwissenschaften, 1999, 86(8): 396-399.

[7]Zalucki M P, Clarke A R, Malcolm S B. Ecology and behavior of first instar larval Lepidoptera. Annual Review of Entomology, 2002, 47(1): 361-393.

[8]Perkins L E, Cribb B W, Hanan J, Glaze E, Beveridge C, Zalucki M P. Where to from here? The mechanisms enabling the movement of first instar caterpillars on whole plants usingHelicoverpaarmigera(Hübner). Arthropod-Plant Interactions, 2008, 2(4): 197-207.

[9]Piesik D, Rochat D, van der Pers J, Marion-Poll F. Pulsed odors from maize or spinach elicit orientation in European corn borer neonate larvae. Journal of Chemical Ecology, 2009, 35(9): 1032-1042.

[10]Sadek M M. Complementary behaviors of maternal and offspringSpodopteralittoralis: oviposition site selection and larval movement together maximize performance. Journal of Insect Behavior, 2011, 24(1): 67-82.

[11]Salloum A, Colson V, Marion-Poll F. Appetitive and aversive learning inSpodopteralittoralislarvae. Chemical Senses, 2011, 36(8): 725-731.

[12]Pszczolkowski M A, Brown J J. Single experience learning of host fruit selection by Lepidopteran larvae. Physiology & Behavior, 2005, 86(1/2): 168-175.

[13]Hendel T, Michels B, Neuser K, Schipanski A, Kaun K, Sokolowski M B, Marohn F, Michel R, Heisenberg M, Gerber B. The carrot, not the stick: appetitive rather than aversive gustatory stimuli support associative olfactory learning in individually assayedDrosophilalarvae. Journal of Comparative Physiology A, 2005, 191(3): 265-279.

[14]Cunningham J P, Zalucki M P, West S A. Learning inHelicoverpaarmigera(Lepidoptera: Noctuidae): a new look at the behaviour and control of a polyphagous pest. Bulletin of Entomological Research, 1999, 89(3): 201-207.

[15]李為爭, 王瓊, 李慧玲, 王玨, 李洋洋, 郭線茹, 原國輝. 棉鈴蟲成蟲對兩種關鍵花香氣味的聯系性學習. 生態學報, 2015, 35(11), http://dx.doi.org/10.5846/stxb201308142079.

[16]Becher P G, Guerin P M. Oriented responses of grapevine moth larvaeLobesiabotranato volatiles from host plants and an artificial diet on a locomotion compensator. Journal of Insect Physiology, 2009, 55(4): 384-393.

[17]Perkins L E, Cribb B W, Hanan J, Zalucki M P. The role of two plant-derived volatiles in the foraging movement of 1st instarHelicoverpaarmigera(Hübner): time to stop and smell the flowers. Arthropod-Plant Interactions, 2009, 3(3): 173-179.

[18]Cunningham J P, Lange C L, Walter G H, Zalucki M P. Host location behaviour in the desert caterpillar,Heliothispunctifera. Entomologia Experimentalis et Applicata, 2011, 141(1): 1-7.

[19]李慧玲, 原國輝, 胡晶晶, 李洋洋, 郭線茹, 李為爭. 寄主植物輪換飼養和次生代謝物交叉涂布對棉鈴蟲取食的影響. 生態學報, 2014, 34(24): 7421-7427.

[20]Raguso R A, Levin R A, Foose S E, Holmberg M W, McDade L A. Fragrance chemistry, nocturnal rhythms and pollination “syndromes" inNicotiana. Phytochemistry, 2003, 63(3): 265-284.

[21]Sun J G, Huang L Q, Wang C Z. Electrophysiological and behavioral responses ofHelicoverpaassulta(Lepidoptera: Noctuidae) to tobacco volatiles. Arthropod-Plant Interactions, 2012, 6(3): 375-384.

[22]Skiri H T, Stranden M, Sandoz J C, Menzel R, Mustaparta H. Associative learning of plant odorants activating the same or different receptor neurones in the mothHeliothisvirescens. The Journal of Experimental Biology, 2005, 208(4): 787-796.

[23]Daly K C, Carrell L A, Mwilaria E. Characterizing psychophysical measures of discrimination thresholds and the effects of concentration on discrimination learning in the mothManducasexta. Chemical Senses, 2008, 33(1): 95-106.

[24]Stranden M, R?stelien T, Liblikas I, Almaas T J, Borg-Karlson A K, Mustaparta H. Receptor neurones in three heliothine moths responding to floral and inducible plant volatiles. Chemoecology, 2003, 13(3): 143-154.

[25]Fan R J, Anderson P, Hansson B S. Behavioural analysis of olfactory conditioning in the mothSpodopteralittoralis(Boisd.) (Lepidoptera: Noctuidae). The Journal of Experimental Biology, 1997, 200(23): 2969-2976.

[26]Fan R J, Hansson B S. Olfactory discrimination conditioning in the mothSpodopteralittoralis. Physiology & Behavior, 2001, 72(1/2): 159-165.

[27]Daly K C, Smith B H. Associative olfactory learning in the mothManducasexta. The Journal of Experimental Biology, 2000, 203(13): 2025-2038.

[28]李為爭, 李慧玲, 王玨, 郭線茹, 游秀峰, 原國輝. 蛾類花香型廣譜引誘劑配方的均勻設計. 中國農學通報, 2014, 30(4): 304-311.

[29]江生. 小麥麩皮不同提取物的分析和抗氧化活性研究[D]. 鎮江: 江蘇大學, 2009.

[30]郭鈺, 曾玲, 梁廣文. 長頭谷盜對 6 種寄主谷粉及其揮發物的行為反應. 環境昆蟲學報, 2012, 34(4): 432-440.

[31]耿勝榮, 夏和舟, 鉏曉艷, 陳玉霞, 葉麗秀, 熊光權. 頂空固相微萃取-氣相色譜-質譜聯用法分析酵母浸膏輻照揮發性成分. 食品科學, 2014, 35(6): 55-59.

[32]郭予元. 棉鈴蟲的研究. 北京: 中國農業出版社, 1998.

[33]Traynier R M M. Visual learning in assays of sinigrin solution as an oviposition releaser for the cabbage butterfly,Pierisrapae. Entomologia Experimentalis et Applicata, 1986, 40(1): 25-33.

[34]Matsumoto Y, Mizunami M. Formation of long-term olfactory memory in the cricketGryllusbimaculatus. Chemical Senses, 2005, 30 (S1): i299-i300.

[35]Decker S, McConnaughey S, Page T L. Circadian regulation of insect olfactory learning. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(40): 15905-15910.

[36]李為爭, 付國需, 王英慧, 原國輝, 張元臣, 柴曉樂. 棉鈴蟲幼蟲對人類呈味物質的取食反應. 生態學報, 2010, 30(21): 5709-5715.

[37]Hartlieb E. Olfactory conditioning in the mothHeliothisvirescens. Naturwissenschaften, 1996, 83(2): 87-88.

Associative learning in early-instar larvae ofHelicoverpaarmigerain response to several floral volatiles

HU Jingjing, YUAN Guohui, LI Yangyang, GUO Xianru, WANG Qiong, GUO Shuaishuai, LI Weizheng*

CollegeofPlantProtection,HenanAgriculturalUniversity,Zhengzhou450002,China

Associative learning is a basic mechanism required for herbivorous insects to adapt to highly variable environments. In most lepidopteran species, the adult stage is the main stage responsible for host plant selection, but newly hatched larvae can also contribute to host selection by moving a short distance from their birth position to feeding parts on plants. An understanding of mechanisms underlying olfactory associative learning in larvae would be helpful in enhancing the effectiveness of natural lethal factors on early instar stages via ecological interference and provide a scientific accordance for cultivating crop varieties that cannot be easily attacked by the larvae. Studies on olfactory associative learning in lepidopteran species have generally concentrated on the adult stage; little attention has been paid to early-instar larvae, probably because of their limited mobility and relatively simple life behaviors. Once the larvae are forced to leave their natal host plant, they need to move to plants with an odor profile that is similar to that of the previous host so that the larvae do not have to re-adapt to novel diet items and save the cost of physiological metabolism caused by host switch. As long as the memory of some key and stable cues is formed, the larvae can recognize and re-locate to these food plants, thus improving their fitness. Since the females ofHelicoverpaarmigera(Hübner) prefer to oviposit on or near the flowering parts of a plant and the larvae exclusively feed on flowering parts, we hypothesized that some key floral volatiles may represent the characteristic olfactory cues of their natural foods. In previous studies on larval classical conditioning, the subjects were starved enough time to enhance their feeding motivation, and the inter-stimulus intervals and inter-trial intervals were strictly controlled in the laboratory; thus, the ecological relevance of larval classical conditioning is weak. In this paper, we have reported the associative learning capability of and corresponding temporal pattern of learning performance in early-instar larvae ofH.armigera(Hübner) (Lepidoptera: Noctuidae) to the association between conditioned stimuli (seven floral volatiles with biological meaning toH.armigera) and an un-conditioned stimulus (artificial diet). During a seven-day conditioning period, the larvae were continually exposed to the floral volatiles. Results of the conditioning show that the phenylacetaldehyde-conditioning group exhibited significant preference to phenylacetaldehyde. Phenethylalcohol-and linalool-conditioned groups exhibited significant preference to the corresponding conditioned stimuli. However, benzaldehyde, phenylmethanol, benzyl acetate, and geraniol did not produce a positive result at any conditioning time lengths; this suggested that the larvae selectively sensed and remembered the cue of some stable and key components during the feeding process, rather than responding to all the floral volatiles equally. In addition, the na?ve group did not show any preference to phenylacetaldehyde in all the tests, regardless of the time length after 24 h of feeding; this suggested that the alteration of the olfactory preference during conditioning was not induced by physiological maturity. Taken together,H.armigeralarvae exhibited olfactory learning capability, and the variation in olfactory preference had no relationship with the conditioning time length. Possible explanations for such findings have been discussed with respect to the ecological habits of the larvae.

Helicoverpaarmigera; early-instar larvae; floral odor; associative learning; selection preference

10.5846/stxb201411022145

國家自然科學基金資助項目(31471772);國家公益性行業(農業)專項資助項目(201203036)

2014-11-02; 網絡出版日期:2015-10-29

Corresponding author.E-mail: wei-zhengli@163.com

胡晶晶,原國輝,李洋洋,郭線茹,王瓊,郭帥帥,李為爭.棉鈴蟲低齡幼蟲對花香揮發物的聯系性學習.生態學報,2016,36(13):4204-4210.

Hu J J, Yuan G H, Li Y Y, Guo X R, Wang Q, Guo S S, Li W Z.Associative learning in early-instar larvae ofHelicoverpaarmigerain response to several floral volatiles.Acta Ecologica Sinica,2016,36(13):4204-4210.

主站蜘蛛池模板: 亚洲视频二| 亚洲AⅤ波多系列中文字幕| 精品国产亚洲人成在线| 国产靠逼视频| 在线免费无码视频| 国产小视频a在线观看| 91青草视频| 国产精品女熟高潮视频| 亚洲三级a| 天天躁日日躁狠狠躁中文字幕| 国产自在线播放| 在线无码九区| 91久久天天躁狠狠躁夜夜| 亚洲欧洲日产国产无码AV| 久久久久人妻一区精品| 亚洲最黄视频| 色有码无码视频| 亚洲国产天堂久久九九九| 国产成人综合日韩精品无码不卡 | 操美女免费网站| 亚洲天堂精品视频| 思思热精品在线8| 欧美国产在线一区| 五月激情婷婷综合| 国产在线小视频| 国产成人啪视频一区二区三区| 日韩欧美中文字幕在线韩免费| 一本视频精品中文字幕| 国产成人三级在线观看视频| 亚洲自偷自拍另类小说| 亚洲国产成熟视频在线多多| 国产精品13页| 国产精品福利在线观看无码卡| 四虎影视库国产精品一区| 欧美一区二区福利视频| 日韩欧美中文在线| 2022国产91精品久久久久久| 国产男女XX00免费观看| 成人小视频在线观看免费| 国产精品微拍| 久久亚洲天堂| 青青久在线视频免费观看| 91亚洲影院| 激情综合图区| 亚洲 欧美 偷自乱 图片| 国产精品区视频中文字幕| 久久精品这里只有国产中文精品| 日本日韩欧美| 69视频国产| av手机版在线播放| 91日本在线观看亚洲精品| 久久精品丝袜| 欧美三级视频网站| 国产第一页亚洲| 国产成人超碰无码| 国精品91人妻无码一区二区三区| 欧美国产在线看| 99精品这里只有精品高清视频| 国产精品伦视频观看免费| 国产精品久久久久久久久久久久| 国产真实二区一区在线亚洲| 天天躁夜夜躁狠狠躁图片| 国产欧美高清| 亚洲黄色成人| 亚洲成人播放| 亚洲精品你懂的| 欧美有码在线| 欧美日韩北条麻妃一区二区| 久草视频中文| 91美女视频在线| 国产精品免费久久久久影院无码| 免费不卡视频| 国产成人狂喷潮在线观看2345| 欧美色视频网站| 欧美成人午夜视频| AV片亚洲国产男人的天堂| 亚洲无卡视频| 欧美成人午夜视频| 超碰aⅴ人人做人人爽欧美 | 亚洲国产精品日韩av专区| www.亚洲国产| 一本大道香蕉高清久久|