曹小闖, 李曉艷,朱練峰,張均華,禹盛苗,吳良歡,金千瑜,*
1 中國水稻研究所,水稻生物學國家重點實驗室, 杭州 310006
2 浙江大學環境與資源學院,教育部環境修復與生態健康重點實驗室,杭州 310058
?
水分管理調控水稻氮素利用研究進展
曹小闖1, 李曉艷2,朱練峰1,張均華1,禹盛苗1,吳良歡2,金千瑜1,*
1 中國水稻研究所,水稻生物學國家重點實驗室, 杭州310006
2 浙江大學環境與資源學院,教育部環境修復與生態健康重點實驗室,杭州310058

水分管理;根際溶氧量;氮代謝;光合氮素利用率;水稻
水稻是我國種植面積最大、灌溉用水量最多的作物, 全國種植面積達3000萬hm2[1]。作為一個需氧的有機體,水稻雖然有發達的通氣組織以保證根系的正常需氧活動,但半水生性特點要求其生長過程中需要大量的灌溉水,因此土壤供氧狀況仍是限制水稻根系生長的關鍵因子[2]。長期處于淹水狀態的稻田,空氣很難進入到土壤中,水稻根系及微生物的呼吸作用消耗大量氧氣,導致土壤中的氧濃度極低。持續的低氧環境會引起稻田還原性有毒物質的積累,根系細胞能量代謝失衡、細胞質酸化及低氧的生理生化反應,對水稻根系形態結構、根系活力和生長發育等都會產生嚴重影響[3-4]。研究發現,濕潤灌溉、干濕交替、好氧栽培等水分管理能通過調控根際溶氧量促進水稻生長[5-8],誘導水稻的生理特性及改善根系的吸收功能增強其抗旱性能,達到以不犧牲光合產物積累而大幅度提高氮素利用效率的目的[9-10]。增加根際溶氧量還能刺激土壤氮的礦化作用,且氮素形態顯著影響水稻的光合速率[11]。隨著我國氮肥用量的不斷增加,水稻的氮素利用率呈不斷降低趨勢;灌水過多、不合理的水分管理也顯著增加稻田氮素損失,因此尋找提高氮肥利用率的新途徑是目前急需解決的突出問題[12]。本文通過國內外最新文獻綜述了稻田水分管理對水稻根際氮素形態、氮吸收利用、光合速率及其氮環境效應的影響等方面研究進展,以期為相關研究提供參考。

增加根際溶氧量還能顯著提高根際氧化還原電位及根系活力,這不僅有利于根系對營養物質的吸收,還使根際土壤磷有效性增加、還原性有害物質(Fe2+、Mn2+、H2S等)減少,為水稻生長、氮吸收代謝提供有利的外部環境[19-20]。干濕交替及好氧栽培模式下土壤團聚體破碎釋放出的閉蓄態有機物、微生物細胞溶解及滲透調節物質的分泌等都將提高基質的有效性及碳、氮礦化率[21];還提高了有機質有效性并能抵制微生物進入半休眠狀態,這也增加微生物生物量碳、氮[18]。碳源是微生物生長繁殖的限制因素,高量的溶解性有機碳提升了微生物生物量和酶活性,隨之土壤結構得到改善,碳氮有效性將進一步提高[22]。
2.1稻田水分管理對水稻氮吸收的影響



2.2稻田水分管理對水稻氮吸收的調控機制研究
根際是植物、土壤和微生物相互作用的特殊區域,是植物、土壤、微生物進行物質和能量交換及信息傳遞的門戶。根際缺氧或無氧環境下水稻根系細胞迅速從有氧呼吸切換為以乙醇發酵途徑為主的無氧呼吸,ATP合成量僅為正常時3%—5%,能量嚴重虧缺,不利于水稻對氮的吸收[41]。短期缺氧脅迫時,水稻根系能通過增加通氣組織功能提高氧氣向根尖的轉運效率, 減少吸收營養物質的根表面積, 但提高著生在主根上的側根數目以增加對營養物質的吸收[42]。通過調控水分管理增加根際溶氧量可顯著提高稻田氧化還原電位和硝態氮含量,這兩個因素都會影響水稻的根系形態建成和氮素吸收[43]。增加根際溶氧量對水稻氮吸收代謝有顯著的促進作用,這可能是由于隨著根際溶氧量增加,根系呼吸作用加強,為氮吸收提供更多的能量;也可能受增氧條件下根系形態變化的影響,主要表現為最長根增長、孔隙度減小、側根和不定根數減少、外皮層厚壁組織細胞疏松,根系活力增強[6,44]。楊菲等[45]發現干濕交替能明顯提高根際氧濃度,增加水稻根系生物量、根毛數、根系表面積,并促進水稻4級次生側根的發生。Jackson等[46]發現增氧可顯著提高水稻根長及其生物量,且能顯著增加深層根的比例,說明增加根際氧濃度可促進根系向下層生長,提高土壤中水分和養分的有效性。富氧環境可提高水稻總根長和下層根系所占的干物質比例,且提高了根系自根基到根尖10—20cm、>20cm部分所占的生物量比例[47]。但根際氧濃度并非越高越好,水稻對根際溶氧量需求存在一定的闕值。研究發現水分含量達到田間持水量的70%—75%時,最有利于水稻根系生長,在此基礎上增加或降低根際溶氧量,水稻的產量及相關氮代謝均會受到顯著影響[48]??傊敌螒B結構的改變必將導致水稻對土壤氮素吸收利用能力的改變,根系生物量大、直徑大、空隙高度及不定根數量高的水稻品種在氮素吸收及產量上均有明顯的優勢,這將為今后選育理想根系品種提供重要參考。

2.3稻田水分管理對水稻光合速率的調控研究


氮素利用率是決定氮肥增產效果的主要因素,受氮肥用量、施肥方法、水分管理等因素影響。長期淹水種植使稻田氮礦化速率極慢,還田秸稈等有機質分解不充分,導致土壤積累大量的酚醛木質素化合物,降低氮素有效性[75],這將阻礙水稻對土壤背景氮的吸收但對肥料氮吸收沒有影響,加重水稻生產對肥料的依賴。以南太湖流域淹灌稻田為例,淹灌稻田中氮揮發、徑流、淋失等途徑是造成氮肥利用率低的主要原因,三者氮損失量分別占施氮量的20%—40%、1.4%—6.3%及1.0%—1.9%[76]。稻田氮素損失受溫度、水分、氮源、pH 值、C/N、氧化還原電位等諸多因素影響,其中土壤持水量能夠很好的反映土壤溶解氧的狀況,因而通過調控稻田水分含量將影響稻田氮素損失。在稻田生態系統中,CH4是造成全球溫室效應的主要氣體。Liesack等[77]指出,稻田產生的CH4大約有高達36%—80%在根際微氧區域被甲烷氧化細菌消耗, 因此根際生物氧化在控制稻田溫室氣體排放過程中具有非常重要的作用[78]。甲烷氧化菌是一種嚴格的好氧菌, 而產生CH4、N2O等溫室氣體的甲烷細菌、反硝化細菌大部分都屬于厭氧菌[79]。稻田持續淹水導致土壤缺氧,抑制甲烷氧化菌的活性。當頻繁干濕交替及增加根際溶氧量后土壤的氧化還原電位增加,土壤微生物群落結構發生變化,甲烷氧化菌等好氧微生物活性顯著增加,可抑制溫室氣體的產生。李香蘭等[80]發現,稻田持續淹水處理CH4排放量是烤田處理的12—20倍。因此通過適宜的水分管理改善根系氮素、溶氧量狀況,可能會降低甲烷細菌、反硝化細菌等厭氧微生物的數量和活性,減少CH4、N2O等溫室氣體的生成。

氮素生理利用率與光合作用緊密相關,水稻氮肥利用率的降低必然與植物光合氮素利用率的降低有關。張云橋等[83]發現,高氮效水稻品種的葉綠素含量較低,但光合速率下降卻不明顯;且氮高效水稻基因型在各生育期均具有理想的株型、葉面積指數、光合勢和群體生長速率來協調其氮素高效吸收利用[84]。當前有關水稻光合同化物的形成與利用、氮素在體內運輸和轉運、籽粒充實等對于根際氧濃度的響應,以及相關吸收和轉運蛋白的表達調控機制等方面報道較少。因此,加強這些方面的研究能夠更好完善水稻氧營養代謝機制,將為高氮效水稻品種選育提供更好的參考價值。
基于以上的分析,可以認為稻田生態系統中水稻氮素利用需要從以下幾方面進行深入研究:
(1) 合理的水分管理能促進水稻氮素吸收,提高氮素利用率。因此,通過控制稻田水氮互作協調土壤水-肥-氣的平衡,根據影響氮肥利用率和光合作用的限制因素探索和開發新型水氮集成管理技術,將有利于構建理想水稻根系、健康稻田環境,提高水稻產量和氮素利用效率。
(2) 氮水平、氮形態能通過調控葉片光合速率影響水稻的生長發育及氮素利用率。加強水氮互作對水稻不同生育期光合速率的影響研究,明確光合氮素利用率與根際氮形態特征及溶氧量的響應關系,這將為我們全面闡述水氮互作提高水稻氮肥利用率的光合生理本質奠定基礎。
(3)當前根際氧調控根系吸收特性的相關研究較少,進一步揭示不同根際氧濃度下水稻根系功能與養分利用間的內在聯系是根際氧研究的發展趨勢。水稻根系及植株的衰老主要受激素調控,明確根際氧與激素在延緩衰老中的互作機制,進而闡述溶氧量調控根系生長發育和生理功能的機理,提高根系機能并帶動外界營養的高利用率以及光合產物的轉運效率,對于水稻后期產量潛能的發揮和超高產栽培都具有重要科學意義。
[1]中國統計年鑒, 2014. http://www.stats.gov.cn/tjsj/ndsj/2014/indexch.Htm.
[2]Angela Hodge, Graziella Berta, Claude Doussan, Francisco Merchan, Martin Crespi. Plant root growth, architecture and function. Plant and Soil, 2009, 321(1/2): 153-187.
[3]Konstantin Yu Kulichikhin, Olli Aitio, Tamara V Chirkova, Kurt V Fagerstedt. Effect of oxygen concentration on intracellular pH, glucose-6-phosphate and NTP content in rice (Oryzasativa) and Wheat (Triticumaestivum) root tips: in vivo31P-NMR study. Physiologia Plantarum, 2007, 129(3): 507-518.
[4]Julia Bailey-Serres, Takeshi Fukao, Daniel J Gibbs, Michael J Holdsworth, Seung Cho Lee, Francesco Licausi, Pierdomenico Perata, Laurentius A C J Voesenek, Joost T van Dongen. Making sense of low oxygen sensing. Trends in Plant Science, 2012, 17(3): 129-138.
[5]趙鋒, 張衛建, 章秀福, 王丹英, 徐春梅. 稻田增氧模式對水稻籽粒灌漿的影響. 中國水稻科學, 2011, 25(6): 605-612.
[6]Motoka Nakamura, Takatoshi Nakamura, Takayoshi Tsuchiya, Ko Noguchi. Functional linkage between N acquisition strategies and aeration capacities of hydrophytes for efficient oxygen consumption in roots. Physiologia Plantarum, 2013, 147(2): 135-146.
[7]Zhu L F, Yu S M, Jin Q Y. Effects of aerated irrigation on leaf senescence at late growth stage and grain yield of rice. Rice Science, 2012, 19(1): 44-48.
[8]Li Y L, Wang X X. Root-induced changes in radial oxygen loss, rhizosphere oxygen profile, and nitrification of two rice cultivars in Chinese red soil regions. Plant and Soil, 2013, 365(1/2): 115-126.
[9]潘英華, 康紹忠. 交替隔溝灌溉水分入滲規律及其對作物水分利用的影響. 農業工程學報, 2000, 16(1): 39-43.
[10]周江明, 姜家彪, 姜新有, 詹麗釧. 不同肥力稻田晚稻水氮耦合效應研究. 植物營養與肥料學報, 2008, 14(1): 28-35.
[11]Guo S W, Katrin Sehiemer, Burkhard Sattelmaeher, Ulf-Peter Hansen. Different apparent CO2compensation points in nitrate-and ammonium-growthPhaseolusvulgarisand the relationship to non-photorespiratory CO2evolution. Physiologia Plantarum, 2005, 123(3): 288-301.
[12]張福鎖, 王激清, 張衛峰, 崔振嶺, 馬文奇, 陳新平, 江榮風. 中國主要糧食作物肥料利用率現狀與提高途徑. 土壤學報, 2008, 45(5): 915-924.
[13]趙霞, 徐春梅, 王丹英, 陳松, 計成林, 陳麗萍, 章秀福. 根際溶氧量在水稻氮素利用中的作用機制研究. 中國水稻科學, 2013, 27(6): 647-652.
[14]劉學, 朱練峰, 陳琛, 王會民, 歐陽由男, 禹盛苗, 金千瑜. 超微氣泡增氧灌溉對水稻生育特性及產量的影響. 灌溉排水學報, 2009, 28(5): 89-91.
[15]段英華, 張亞麗, 沈其榮. 水稻根際的硝化作用與水稻的硝態氮營養. 土壤學報, 2004, 41(5): 803-809.
[16]Kirk G J D, Kronzucker H J. The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: A modeling study. Annals of Botany, 2005, 96(4): 639-646.
[17]裴鵬剛, 張均華, 朱練峰, 禹盛苗, 金千瑜. 根際氧濃度調控水稻根系形態和生理特性研究進展. 中國稻米, 2013, 19(2): 6-8.
[18]Noah Fierer, Joshua P Schimel. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biology and Biochemistry, 2002, 34(6): 777-787.
[19]趙峰, 王丹英, 徐春梅, 張衛建, 章秀福. 水稻氧營養的生理、生態機制及環境效應研究進展. 中國水稻科學, 2009, 23(4): 335-341.
[20]Revsbech N P, Pedersen O, Reichardt W, Briones A. Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions. Biology and Fertility of Soils, 1999, 29(4): 379-385.
[21]Butterly C R, Bünemann E K, McNeill A M, Baldock J A, Marschner P. Carbon pulses but not phosphorus pulses are related to decreases in microbial biomass during repeated drying and rewetting of soils. Soil Biology and Biochemistry, 2009, 41(7): 1406-1416.
[22]Maria Stenberg, Bo Stenberg, Tomas Rydberg. Effects of reduced tillage and liming on microbial activity and soil properties in a weakly-structured soil. Applied Soil Ecology, 2000, 14(2): 135-145.
[23]Francesco Licausi. Regulation of the molecular response to oxygen limitations in plants. New Phytologist, 2011, 190(3): 550-555.
[24]Halley C Oliveira, Luciano Freschi, Ladaslav Sodek. Nitrogen metabolism and translocation in soybean plants subjected to root oxygen deficiency. Plant Physiology and Biochemistry, 2013, 66: 141-149.
[25]Maria Stoimenova, Abir U Igamberdiev, Kapuganti Jagadis Gupta, Robert D Hill. Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria. Planta, 2007, 226(2): 465-474.
[26]Faouzi Horchani, Samira Aschi-Smiti, Renaud Brouquisse. Involvement of nitrate reduction in the tolerance of tomato (SolanumlycopersicumL.) plants to prolonged root hypoxia. Acta Physiologiae Plantarum, 2010, 32(6): 1113-1123.
[27]Anne Botrel, Werner M Kaiser. Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status. Planta, 1997, 201(4): 496-501.
[28]Shi K, Ding X T, Dong D K, Zhou Y H, Yu J Q. Putrescine enhancement of tolerance to root-zone hypoxia inCucumissativus: a role for increased nitrate reduction. Functional Plant Biology, 2008, 35(4): 337-345.
[29]徐春梅, 王丹英, 陳松, 陳麗萍, 章秀福. 增氧對水稻根系生長與氮代謝的影響. 中國水稻科學, 2012, 26(3): 320-324.
[30]趙鋒, 張衛建, 章秀福, 王丹英, 徐春梅. 連續增氧對不同基因型水稻分蘗期生長和氮代謝酶活性的影響. 作物學報, 2012, 38(2): 344-351.
[31]王紹華, 曹衛星, 丁艷鋒, 田永超, 姜東. 水氮互作對水稻氮吸收與利用的影響. 中國農業科學, 2004, 37(4): 497-501.
[32]陳新紅, 劉凱, 徐國偉, 王志琴, 楊建昌. 結實期氮素營養和土壤水分對水稻光合特性、產量及品質的影響. 上海交通大學學報: 農業科學版, 2004, 22(1): 48-53.
[33]孫永健, 孫園園, 李旭毅, 郭翔, 馬均. 水氮互作下水稻氮代謝關鍵酶活性與氮素利用的關系. 作物學報, 2009, 35(11): 2055-2063.
[34]Trought M C T, Drew M C. Alleviation of injury to young wheat plants in anaerobic solution cultures in relation to the supply of nitrate and other inorganic nutrients. Journal of Experimental Botany, 1981, 32(3): 509-522.
[35]Wang X Z, Zhu J G, Gao R, Yasukazu H, Feng K. Nitrogen cycling and losses under rice-wheat rotations with coated urea and urea in the Taihu lake region. Pedosphere, 2007, 17(1): 62-69.
[36]Tan X Z, Shao D G, Liu H H, Yang F S, Xiao C, Yang H D. Effects of alternate wetting and drying irrigation on percolation and nitrogen leaching in paddy fields. Paddy and Water Environment, 2013, 11(1/4): 381-395.
[37]Sepaskhah A R, Barzegar M. Yield, water and nitrogen-use response of rice to zeolite and nitrogen fertilization in a semi-arid environment. Agricultural Water Management, 2010, 98(1): 38-44.
[38]劉艷麗, 張斌, 胡峰, 喬潔, 張衛健. 干濕交替對水稻土碳氮礦化的影響. 土壤, 2008, 40(4): 554-560.
[39]何文壽, 李生秀, 李輝桃. 水稻對銨態氮和硝態氮吸收特性的研究. 中國水稻科學, 1998, 12(4): 249-252.
[40]Lon S, Chen N C, Chishaki N, Inanaga S. Behavior of N within rice plants, comparing between Japonica and Indica varieties. Ecology and Environment, 2004, 13(4): 646-650.
[41]Almeida A M, Vriezen W H, Van Der Straeten D. Molecular and physiological mechanisms of flooding avoidance and tolerance in rice. Russian Journal of Plant Physiology, 2003, 50(6): 743-751.
[42]Jean Armstrong, William Armstrong. Rice: Sulfide-induced barriers to root radial oxygen loss, Fe2+and water uptake, and lateral root emergence. Annals of Botany, 2005, 96(4): 625-638.
[43]Jampeetong Arunothai, Brix Hans. Oxygen stress inSalvinianatans: Interactive effects of oxygen availability and nitrogen source. Environmental and Experimental Botany, 2009, 66(2): 153-159.
[44]Zhao F, Xu C M, Zhang W J, Zhang X F, Li F B, Chen J P, Wang D Y. Effects of rhizosphere dissolved oxygen content and nitrogen form on root traits and nitrogen accumulation in rice. Rice Science, 2011, 18(4): 304-310.
[45]楊菲, 謝小立. 稻田干濕交替過程生理生態效應研究綜述. 雜交水稻, 2010, 25(2): 1-4.
[46]Jackson M B, Colmer T D. Response and adaptation by plants to flooding stress. Annals of Botany, 2005, 96(4): 501-505.
[47]王丹英, 韓勃, 章秀福, 邵國勝, 徐春梅, 符冠富. 水稻根際含氧量對根系生長的影響. 作物學報, 2008, 34(5): 803-808.
[48]張玉屏, 李金才, 黃義德, 黃文江. 水分脅迫對水稻根系生長和部分生理特性的影響. 安徽農業科學, 2001, 29(1): 58-59.

[50]Wang X B, Wu P, Hu B, Chen Q S. Effects of nitrate on the growth of lateral root and nitrogen absorption in rice. Acta Botanica Sinica, 2002, 44(6): 678-683.
[51]Herbert J Kronzucker, M Yaeesh Siddiqi, Anthony D M Glass, Guy J D Krik. Nitrate-ammonium synergism in rice: A subcellular flux analysis. Plant Physiology, 1999, 119(3): 1041-1046.



[55]Cao Y, Fan X R, Sun S B, Xu G H, Hu J, Shen Q R. Effect of nitrate on activities and transcript levels of nitrate reductase and glutamine synthetase in rice. Pedosphere, 2008, 18(5): 664-673.
[56]趙鋒, 王丹英, 徐春梅, 張衛建, 李鳳博, 毛海軍, 章秀福. 根際增氧模式的水稻形態、生理及產量響應特征. 作物學報, 2010, 36(2): 303-312.
[57]Elizabeth A Ainsworth, Stephen P Long. What have we learned from 15 years of free-air CO2enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 2005, 165(2): 351-372.
[58]Andrew D B Leakey, Martin Uribelarrea, Elizabeth A Ainsworth, Shawna L Naidu, Alistair Rogers, Donald R Ort, Stephen P Long. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2concentration in the absence of drought. Plant Physiology, 2006, 140(2): 779-790.
[59]Debabrata Ray, Sheshshayee M S, Mukhopadhyay K, Bindumadhava H, Prasad T G, Kumar M Udaya. High nitrogen use efficiency in rice genotypes is associated with higher net Photosynthetic rate at lower Rubisco content. Biologia Plantarum, 2003, 46(2): 251-256.
[60]Oula Ghannoum, John R Evans, Wah Soon Chow, T John Andrews, Jann P Conroy, Susanne von Caemmerer. Faster Rubisco is the key to superior nitrogen-use efficiency in NADP-Malic enzyme relative to NAD-Malic enzyme C4grasses. Plant Physiology, 2005, 137(2): 638-650.
[61]Amane Makino, Tetsuya Sato, Hiromi Nakano, Tadahiko Mae. Leaf photosynthesis, plant growth and nitrogen allocation in rice under different irradiances. Plant, 1997, 203(3): 390-398.
[62]Chandler J W, Dale J E. Nitrogen deficiency and fertilization effects on needle growth and Photosynthesis in Sitka spruce (Piceasilchensis). Tree Physiology, 1995, 15(12): 813-817.
[63]Charles R Warren. The photosynthetic limitation posed by internal conductance to CO2movement is increased by nutrient supply. Journal of Experimental Botany, 2004, 55(406): 2313-2321.
[64]Li Y, Yang X X, Ren B B, Shen Q R, Guo S W. Why nitrogen use efficiency decreased under high nitrogen supply of rice seedlings (OryzasativaL.)? Journal of Plant Growth Regulation, 2012, 31(1): 47-52.
[65]Pia Walch-Liu, Günter Neumann, Fritz Bangerth, Christof Engels. Rapid effects of nitrogen form on leaf morphogenesis in tobacco. Journal of Experimental Botany, 2000, 51(343): 227-237.
[66]John M Bowler, Malcolm C Press. Effects of elevated CO2, nitrogen form and concentration on growth and photosynthesis of a fast-and slow-growing grass. New Phytologist, 1996, 132(3): 391-401.
[67]Guo S W, Brück H, Sattelmacher B. Effects of supplied nitrogen form on growth and water uptake of French bean (PhaseolusvulgarisL.) plants. Plant and Soil, 2002, 239(2): 267-275.
[68]Guo S W, Zhou Y, Shen Q R, Zhang F S. Effect of ammonium and nitrate nutrition on some physiological processes in higher plants-growth, photosynthesis, photorespiration, and water relations. Plant Biology, 2007, 9(1): 21-29.
[69]John A Raven. Regulation of pH and generation of osmolarity in vascular plants: A cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytologist, 1985, 101(1): 25-77.
[70]Li Y, Gao Y X, Xu X M, Shen Q R, Guo S W. Light-saturated photosynthetic rate in high-nitrogen rice (OryzasarivaL.) leaves is related to chloroplastic CO2concentration. Journal of Experimental Botany, 2009, 60(8): 2351-2360.
[71]Fort C, Fauveau M L, Muller F, Label P, Granier A, Dreyer E. Stomatal conductance, growth and root signaling in young oak seedlings subjected to partial soil drying. Tree Physiology, 1997, 17(5): 281-289.
[72]丁雷, 李英瑞, 李勇, 沈其榮, 郭世偉. 梯度干旱脅迫對水稻葉片光合和水分狀況的影響. 中國水稻科學, 2014, 28(1): 65-70.
[73]陳貴, 周毅, 郭世偉, 沈其榮. 水分脅迫和不同形態氮素營養對苗期水稻光合特性的影響. 南京農業大學學報, 2007, 30(4): 78-81.
[74]李勇. 氮素營養對水稻光合作用與光合氮素利用率的影響機制研究[D]. 南京: 南京農業大學, 2011.
[75]Sabina Yeasmin, A K M Mominul Islam, A K M Aminul Islam. Nitrogen fractionation and its mineralization in paddy soils: A review. Journal of Agricultural Science Technology, 2012, 8(3): 775-793.
[76]曹志洪, 林先貴, 楊林章, 胡正義, 董元華, 尹睿. 論“稻田圈” 在保護城鄉生態環境中的功能Ⅱ.稻田土壤氮素養分的累積、遷移及其生態環境意義. 土壤學報, 2006, 43(2): 256-260.
[77]Werner Liesack, Sylvia Schnell, Niels Peter Revsbech. Microbiology of flooded rice paddies. FEMS Microbiology Reviews, 2000, 24(5): 625-645.
[78]Banker B C, Kludze H K, Alford D P, Delaune R D, Lindau C W. Methane sources and sinks in paddy rice soils: Relationship to emissions. Agriculture, Ecosystems & Environment, 1995, 53(3): 243-251.
[79]Karin Enwall, Laurent Philippot, Sara Hallin. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Applied and Environmental Microbiology, 2005, 71(12): 8335-8343.
[80]李香蘭, 徐華, 曹金留, 蔡祖聰, 八木一行. 水分管理對水稻生長期CH4排放的影響. 土壤, 2007, 39(2): 238-240.
[81]Guo J H, Peng Y Z, Wang S Y, Zheng Y N, Huang H J, Wang Z W. Long-term effect of dissolved oxygen on partial nitrification performance and microbial community structure. Bioresource Technology, 2009, 100(111): 2796-2802.
[82]Reddy K R, Patrick W H Jr. Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in a flooded soil. Soil Biology and Biochemistry, 1975, 7(2): 87-94.
[83]張云橋, 吳榮生, 蔣寧, 劉桂華. 水稻的氮素利用效率與品種類型的關系. 植物生理學通訊, 1989, 25(2): 45-47.
[84]魏海燕, 張洪程, 戴其根, 霍中洋, 許軻, 杭杰, 馬群, 張勝飛, 劉慶, 劉艷陽. 不同水稻氮利用效率基因型的物質生產與積累特性. 作物學報, 2007, 33(11): 1802-1809.
Effects of water management on rice nitrogen utilization: a review
CAO Xiaochuang1, LI Xiaoyan2, ZHU Lianfeng1, ZHANG Junhua1, YU Shengmiao1, WU Lianghuan2, JIN Qianyu1,*
1StateKeyLaboratoryofRiceBiology,ChinaNationalRiceResearchInstitute,Hangzhou310006,China
2MinistryofEducationKeyLaboratoryofEnvironmentalRemediationandEcosystemHealth,CollegeofEnvironmentalandResourceSciences,ZhejiangUniversity,Hangzhou310058,China

water management; rhizosphere dissolved oxygen; nitrogen metabolism; photosynthetic nitrogen-use efficiency; rice
10.5846/stxb201411202298
浙江省自然科學基金資助項目(LQ15C130004);國家重點基礎研究發展973計劃資助項目(2015CB150502);國家自然科學基金資助項目(31172032, 30900880)
2014-11-20; 網絡出版日期:2015-10-30
Corresponding author.E-mail: jinqy@mail.hz.zj.cn
曹小闖, 李曉艷,朱練峰,張均華,禹盛苗,吳良歡,金千瑜.水分管理調控水稻氮素利用研究進展.生態學報,2016,36(13):3882-3890.
Cao X C, Li X Y, Zhu L F, Zhang J H, Yu S M, Wu L H, Jin Q Y.Effects of water management on rice nitrogen utilization: a review.Acta Ecologica Sinica,2016,36(13):3882-3890.