祖 斌, 苗 莉
?
光強度對雙固化樹脂黏接劑與牙本質(zhì)黏接強度的影響
祖斌1, 苗莉2
1.100062,北京市崇文口腔醫(yī)院修復(fù)科;2.100700,北京軍區(qū)總醫(yī)院口腔科
【摘要】目的比較不同光強度對雙固化樹脂黏接劑與牙本質(zhì)的黏接強度影響。方法將40顆恒磨牙,暴露咬合面牙本質(zhì)后隨機分為兩組,每組20顆牙。DC組用雙重固化樹脂黏接劑Clearfil DC Bond處理,SE組用光固化樹脂黏接劑Clearfil SE Bond處理后,端端對接從近中方向光照。將黏接試樣沿光照方向切成5片(1 mm/片,L1~5),再將每片垂直黏接界面切出5個微拉伸樣本(1 mm×1 mm),測試兩組黏接強度(mTBS)。結(jié)果隨著穿透牙本質(zhì)厚度增加,光強度降低導(dǎo)致黏接強度下降。部分樣本在制備時發(fā)生界面折斷,SE組存留樣本L1 70%,L2 30%,L3~5為0;DC組L1~5分別為68%,86%,56%,44%和38%。SE 組L1~5黏接強度分別為:(13.22±8.64)MPa,(7.49±3.88)MPa,0、0、0 MPa;DC組為:(11.25±4.11)MPa,(9.69±5.07) MPa,(8.13±4.88)MPa,(6.83±3.53)MPa和(5.56±2.95) MPa。兩組表面兩層黏接強度無統(tǒng)計學(xué)差異。結(jié)論雙固化黏接劑與牙本質(zhì)的黏接強度隨著固化光穿透牙本質(zhì)深度的增加而降低。
【關(guān)鍵詞】光強度;雙固化;黏接劑;黏接強度
目前,口腔黏接最常用光固化樹脂黏接系統(tǒng)(包括樹脂黏接劑和樹脂黏接水門汀),依固化模式分為光固化和雙固化兩種[1]。臨床上,經(jīng)常遇到纖維樁黏接修復(fù)、全瓷黏接修復(fù)等需要在弱光甚至無光照的環(huán)境下進行黏接修復(fù)的情況,光固化系統(tǒng)已不能滿足臨床需要,而需采用雙固化樹脂黏接系統(tǒng)。雙固化樹脂黏接系統(tǒng)結(jié)合了光固化和化學(xué)固化的優(yōu)點,含有兩種引發(fā)體系,可以在光照聚合的同時,通過化學(xué)聚合反應(yīng)來彌補僅由單純光固化所引起的固化不全問題[2-5],即在臨床上弱固化光照條件下的深部黏接時,經(jīng)常利用快速的光固化來獲得良好的最初固位,然后通過化學(xué)固化來完成在窩洞深處或更厚修復(fù)體下樹脂黏接劑的進一步固化。本研究通過觀察固化光穿透不同深度的牙本質(zhì)后,產(chǎn)生的光強度變化對雙重固化樹脂黏接劑和牙本質(zhì)的黏接強度的影響,以期為臨床提供指導(dǎo)。
1材料與方法
1.1材料外科拔除的40顆新鮮無齲離體恒磨牙。本研究使用的樹脂黏接劑為:雙固化黏接劑DC-Bond(DC)和光固化黏接劑SE-Bond(SE)(Kuraray公司,日本)。成分組成及使用方法見表1。

表1 兩種黏接劑的組成成分和使用方法
1.2實驗儀器光固化燈(Bluephase,Ivoclar Vivadent公司,列支敦士登),測光表(Bluphasemeter,Ivoclar Vivadent公司,列支敦士登),切片機(LEICA SP 1600,LEICA公司,德國),超聲蕩洗機(BioSonic VC 100,Coltène/Whaledent公司,瑞士),微拉伸強度測定儀(BISCO公司,美國)。
1.3實驗方法
1.3.1微拉伸樣本制備所有操作均由同一人完成。將選取的40顆新鮮無齲離體恒磨牙,去除近中面和咬合面釉質(zhì)(LEICA SP 1600,LEICA公司,德國)。將咬合面牙本質(zhì)用600目水砂紙打磨制作玷污層,然后超聲蕩洗(BioSonic VC 100,Coltène/Whaledent公司,瑞士),隨機分為兩組,每組20顆牙。DC組咬合面牙本質(zhì)用DC處理,SE組咬合面牙本質(zhì)用SE處理后,端端對接從近中方向光照10 s(650 mW/cm2)(n=10)(Bluephase,Ivoclar Vivadent公司,列支敦士登)。37 ℃水中保存24 h后,用切片機沿光照方向(近中→遠中)切出5片(1 mm厚/片)牙本質(zhì)(L1~5),再將每片牙本質(zhì)垂直黏接界面切出5個牙本質(zhì)-牙本質(zhì)條狀黏接樣本(截面積1 mm×1 mm)。
1.3.2微拉伸樣本分組與測試根據(jù)固化光穿透牙本質(zhì)深度,每種黏接劑分為5組(L1~5),用微拉伸強度測定儀(BISCO公司,美國)測試黏接強度(mTBS)。
1.4統(tǒng)計學(xué)處理使用SPSS 11.0軟件,采用單因素方差分析并組間兩兩比較(One-way ANOVA/ Dunnett T3)同種黏接劑不同固化深度的黏接強度,對相同固化深度不同黏接劑的黏接強度進行t檢驗,P<0.05為差異有統(tǒng)計學(xué)意義。
2結(jié)果
2.1mTBS比較固化光穿透不同牙本質(zhì)深度后兩組的mTBS比較見表2。隨著固化光穿透牙本質(zhì)深度增加,光強度降低,兩組mTBS均有下降。當(dāng)固化光穿透牙本質(zhì)深度為1.5~2.5 mm時,兩組mTBS比較無統(tǒng)計學(xué)差異,當(dāng)固化光穿透牙本質(zhì)深度為3~4 mm時,SE組的牙本質(zhì)黏接強度為0,DC組的mTBS高于SE(P<0.05,表2)。

表2 固化光穿透牙本質(zhì)深度對黏接強度(MPa)的影響 ±s)
2.2層間存留樣本比較部分黏接樣本在制備時發(fā)生界面折斷,SE組存留樣本L170%,L230%,L3~5為0;DC組L1~5分別為68%,86%,56%,44% 和38%。兩組 L1和L2兩層黏接強度無統(tǒng)計學(xué)差異。隨著光照深度增加,DC的mTBS有下降。
3討論
在臨床上,有時不得不通過將固化光透過某種媒介物發(fā)揮光固化作用,如纖維樁黏接、瓷貼面黏接或全瓷冠黏固等。但固化光的強度受媒介物的種類和厚度的影響[6],如光照能量在空氣中會被吸收,造成其隨著光源距離的增加而出現(xiàn)照射強度衰減[6-8]。近已有研究表明,固化光通過復(fù)合樹脂后光照能量會迅速減小[9],造成下方復(fù)合樹脂轉(zhuǎn)換率降低,進而降低復(fù)合樹脂材料的物理性能,并使樹脂內(nèi)未轉(zhuǎn)化的單體增加,造成修復(fù)失敗甚至影響牙髓組織[10-12]。因此,復(fù)合樹脂充填材料的聚合程度在很大程度上取決于光照射強度及其照射時間[13]。當(dāng)固化光穿透瓷片時,隨著瓷片厚度增加,樹脂水門汀的固化程度與硬度均下降[14-16]。
雙固化樹脂黏接系統(tǒng)結(jié)合了光和化學(xué)固化的優(yōu)良特性,能夠規(guī)避單純光固化產(chǎn)生固化不全的弊端。本研究觀察到,用光固化黏接劑SE黏接牙本質(zhì),隨著固化光穿透牙本質(zhì)深度的增加,固化光強度逐漸減弱,導(dǎo)致樹脂聚合轉(zhuǎn)換率降低,黏接劑固化不全,黏接強度下降。有研究發(fā)現(xiàn),含有自固化催化劑成分的樹脂水門汀在所有的光照模式中較不含自固化成分者均能取得相同的,甚至更高的硬度和固化深度[14]。在修復(fù)體透光性弱的情況下,雙固化樹脂黏接劑具有的化學(xué)固化體系可彌補由光照不足導(dǎo)致的固化不全問題[17]。本研究結(jié)果證實了這一點,雙固化黏接劑DC Bond的黏接效果在穿透牙本質(zhì)厚度小于2 mm 時與光固化黏接劑SE Bond相同,在弱光條件下(牙本質(zhì)厚度大于2 mm 時)優(yōu)于光固化黏接劑。
然而,光照仍是影響雙固化樹脂黏接劑聚合、物理性能、黏接性能的重要因素[18],雙固化樹脂黏接劑在無光照情況下聚合不全[1]。本研究也證實了這一點,隨著牙本質(zhì)厚度增加,固化光強度降低,雙固化DC的牙本質(zhì)黏接強度也有下降。因此,在臨床弱光固化情況下進行黏接修復(fù)時,雙固化樹脂黏接劑盡管優(yōu)于光固化黏接劑,但應(yīng)盡可能選用高強度LED固化燈并延長照射時間來彌補光源距離增加所造成的光強度衰減,或選擇配置標準型光導(dǎo)棒或聚光透鏡的高強度LED光固燈等措施,以彌補因光強度減弱導(dǎo)致的黏接強度降低。
【參考文獻】
[1]趙佳萌,王焱,曾晨光,等. 光照模式對雙固化樹脂粘接劑聚合程度的影響[J].中華口腔醫(yī)學(xué)研究雜志(電子版),2013,7(5):357-361.
[2]Papazoglou E, Rahiotis C, Kakaboura A,etal. Polymerization efficiency of dual-polymerized resin cements light-irradiated through ceramics andlaboratory-processed resin composite[J]. Eur J Prosthodont Restor Dent,2008,16(1):15-19.
[3]Feng L, Carvalho R, Suh B I. Insufficient cure under the condition of highirradiance and short irradiation time[J]. Dent Mater, 2009,25(3):283-289.
[4]Breschi L, Mazzoni A, Ruggeri A,etal. Dental adhesion review: agingand stability of the bonded interface[J]. Dent Mater, 2008,24(1):90-101.
[5]Jung H, Friedl K H, Hiller K A,etal. Curing efficiency of differentpolymerization methods through ceramic restorations[J]. Clin OralInvestig, 2001,5(3):156-161.
[6]Aravamudhana K, Rakowskib D, Fanc P L. Variation of depth of cure and intensity withdistance using LED curing lights [J]. Dent mater, 2006,22(11):988-994.
[7]Felix C A,Price R B.The effect of distance from light source on light intensity from curing lights[J].J Adhes Dent,2003,5(4):283-291.
[8]Rode K M,Kawano Y,Turbino M L.Evaluation of curing light distance on resin composite microhardness and polymerization[J].Oper Dent,2007,32(6):571-578.
[9]Price R B, Murphy D G, Dérand T. Light energy transmissionthrough cured resin composite and human dentin [J].Quintessence Int,2000, 31(9):659-667.
[10]Ruyter I E, Oysaed H. Conversion in different depths ofultraviolet and visible light activated composite materials [J].Acta Odontol Scand, 1982, 40(3):179-192.
[11]Ferracane J L, Mitchem J C, Condon J R,etal. Wear and marginal breakdown of composites with various degrees of cure [J].J Dent Res,1997,76(8):1508-1516.
[12]Sideridou I D, Achilias D S. Elution study of unreactedBis-GMA, TEGDMA, UDMA, and Bis-EMA from light-cureddental resins and resin composites using HPLC [J]. J BiomedMater Res B Appl Biomater, 2005, 74(2):617-626.
[13]Leprince J G,Palin W M,Hadis M A,etal.Progress in dime thacrylate-based dental composite technology and curing efficiency[J].Dent Mater,2013,29(2):139-156.
[14]Jung H,Friedl K H, Hiller K A,etal.Polymerization efficiencyof different photocuring units through ceramic discs [J]. Oper Dent, 2006, 31(1):68-77.
[15]Kilinc E, Antonson S A,Hardigan P C,etal.The effect of ceramic restoration shade and thickness on the polymerization of light- and dual-cure resin cements[J]. Oper Dent, 2011, 36(6): 661-669.
[16]Pires-de-Souza Fde C, Drubi Filho B, Casemiro L A,etal. Polymerization shrinkage stress of composites photo-activated by different light sources[J]. Braz Dent J, 2009,20(4): 319-324.
[17]Yoshida K,Atsuta M.Post-irradiation hardening of dual-cured and light-cured resin cements through machinable ceramics[J].Am J Dent,2006,19(5):303-307.
[18]Lee J W,Cha H S,Lee J H.Curing efficiency of various resin-based materials polymerized through different ceramic thicknesses and curing time [J] .J Adv Prosthodont,2011,3(3):126-131.
(2016-02-15收稿2016-03-20修回)
(責(zé)任編輯尤偉杰)
作者簡介:祖斌,本科學(xué)歷,主治醫(yī)師。
【中國圖書分類號】R783.1
Effects of irradiation intensity on the bond strength of dual-cure resin adhesive
ZU Bin1and MIAO Li2.
1.Department of Prosthodontics,Beijing Chongwen Hospital of Stomatology,Beijing 100062, China;2.Department of Stomatology, Beijing Military General Hospital of PLA, Beijing 100700, China
【Abstract】ObjectiveTo evaluate the intensity of irradiation after penetrating dentin, and compare the effects of cure-light on the micro-tensile bond strength (mTBS) of dual-cure dental adhesive.MethodsThe superficial dentin of occlusal surface (40 molars) were exposed and applied with Clearfil DC Bond(A ) or Clearfil SE Bond (B), then bonded together through light-cure from mesial dejection. The bond specimens were cut into sticks(bonding area 1 mm×1 mm) along the direction of light-cure (L1-5) , and tested with Micro-Tensile Tester for mTBS. The statistical analysis was performed using SPSS11.0.ResultsAfter penetrating dentin of 1 mm and 2 mm thickness, the light irradiation decreased to (114±28) mWcm-2and (28±11)mWcm-2, respectively. Some stick samples were broken during preparation, and the fracture occurred at the bonding interface. The remaining samples were SE: L1 70%, L2 30%, L3-L5 0%; DC: L1 to L5 was 68%, 86%, 56%, 44%,38% . The mTBS were (13.22±8.64) MPa (L1), (7.49±3.88) MPa (L2) and 0 MPa (L3 and L4) for SE,(11.25±4.11) MPa (L1), (9.69±5.07) MPa (L2), (8.13±4.88) MPa (L3), (6.83±3.53) MPa (L4) and (5.56±2.95) MPa for DC. There was no significant difference between DC and SE regarding the mTBS of L1 and L2.ConclusionsThe mTBS of dual-cureresin adhesive decreased with the increase of cure-light penetrating depth of dentin.
【Key words】irradiation intensity;dual-cure;resin adhesive; bond strength