鄭明芳,劉 珺,王懷杰,張海英(中國石油化工股份有限公司北京北化院燕山分院,北京市 102500)
?
新型鐵配合物催化乙烯齊聚的研究
鄭明芳,劉 珺,王懷杰,張海英
(中國石油化工股份有限公司北京北化院燕山分院,北京市 102500)
摘 要:以合成的新型鐵配合物——氯化2-正丁酰基-1,10-菲咯啉縮2,6-二乙基苯胺合鐵(Ⅱ)為主催化劑,分別以甲基鋁氧烷(MAO)、改性MAO(MMAO)、三乙基鋁(TEAL)為助催化劑,催化乙烯齊聚。結果表明:相同條件下,以MAO或MMAO為助催化劑的催化劑活性遠高于TEAL作助催化劑;以MMAO為助催化劑時,隨n(Al)∶n(Fe)的增大,催化劑活性呈先升高后降低的趨勢,n(Al)∶n(Fe)為800時,催化劑活性最高,為3.37×107g/(mol·h);隨反應溫度的升高,催化劑活性下降,產物分布向低碳數方向移動;隨反應壓力提高,催化劑活性升高,產物分布也向低碳數方向移動。
關鍵詞:乙烯齊聚 鐵配合物 α-烯烴 齊聚產物
α-烯烴是重要的有機化工原料,廣泛應用在聚烯烴、增塑劑、合成潤滑油和油品添加劑等領域。目前,α-烯烴的生產方法主要是乙烯齊聚法,除乙烯三聚工藝能夠選擇性地生成1-己烯外[1],其他齊聚工藝(如美國雪佛龍菲利普斯化工公司的Ziegler工藝[2]、荷蘭Shell公司的SHOP工藝[3])生產的都是C4~C30的α-烯烴。
1998年,Brookhart等[4-5]發現了一類新型三齒氮結構的吡啶基二亞胺類鐵(鈷)烯烴聚合催化劑后,很多學者通過對配體結構的修飾不斷豐富著這個新家族[6-9],并試圖建立配體結構變化與催化劑活性之間的關聯關系[10];但開發具有高活性的鐵配合物仍然是人們追求的目標[6-7,11]。2006年,Sun Wenhua等[12-15]合成的2-亞胺-1,10-菲咯啉基鐵配合物[見圖1a,R'為氫、甲基或苯基(Ph),R1為甲基、乙基或異丙基]催化乙烯齊聚時表現出很高的活性,采用不同亞胺基對催化劑活性的影響由小到大依次為醛基、苯酰基、乙酰基。隨后合成的丙酰基鐵配合物[16](見圖1a,其中R′為乙基)催化乙烯齊聚的活性雖然不如乙酰基,卻表現出更好的熱穩定性和對C6~C16α-烯烴更高的選擇性。因此,為探尋更好的乙烯齊聚催化劑并總結規律,本工作合成了新型鐵配合物——氯化2-正丁酰基-1,10-菲咯啉縮2,6-二乙基苯胺合鐵(Ⅱ)(見圖1b),并進行了乙烯齊聚的考察。

圖1 催化劑結構Fig. 1 Modified catalyst models
1.1主要試劑與儀器
乙烯,聚合級,中國石油化工股份有限公司北京燕山分公司生產,未經處理直接使用。助催化劑甲基鋁氧烷(MAO),配制成濃度為1.46 mol/ L的甲苯溶液;助催化劑改性MAO(MMAO),配制成濃度為1.88 mol/L的正庚烷溶液:均為美國Albemarle公司生產。助催化劑三乙基鋁(TEAL),質量分數為95%,南京通聯化工有限公司生產。FeCl2·4H2O,分析純,北京雙環化學試劑廠生產。甲苯、四氫呋喃:均為分析純,北京化工廠生產,氮氣保護下加入金屬鈉回流,使用前蒸出。
DMX400型核磁共振儀,德國Bruker公司生產;HP-5971型質譜儀,美國惠普公司生產;7890A型氣相色譜儀,美國安捷倫公司生產。
1.2新型鐵配合物的制備
配體2-正丁酰基-1,10-菲咯啉縮2,6-二乙基苯胺按照文獻[17]方法合成。
配體的核磁共振氫譜(溶劑為氘代氯仿):化學位移為9.25[雙二重峰,耦合常數(J)=2.96,1H],8.66(二重峰,J=8.36,1H),8.33(二重峰,J=8.36,1H),8.28(雙二重峰,J=7.84,1H),7.85(雙二重峰,J=9.02,2H),7.65(雙二重峰,J=4.36,1H),7.15(二重峰,J=7.52,2H),7.06(三重峰,J=7.04,1H),3.01(三重峰,J=7.84,—COCH2—),2.53(多重峰,J=7.56,PhCH2—),2.40(多重峰,J=7.52,PhCH2—),1.58(多重峰,J=7.44,CH3CH2—,2H),1.20(三重峰,J=7.30,PhCH2CH3,6H),0.90(三重峰,J=7.32,CH3CH2CH2—,3H)。
元素分析計算值:w(C)=81.85%,w(H)= 7.13%,w(N)=11.01%;元素分析測量值:w(C)= 81.64%,w(H)= 7.20%,w(N)=10.55%。
配體與等物質的量的FeCl2·4H2O在四氫呋喃中反應,過濾,得到新型鐵配合物。
1.3乙烯齊聚
在300 mL不銹鋼高壓釜中進行乙烯齊聚,高壓釜經加熱抽真空、氮氣置換數次后充入乙烯,降溫至預定溫度,依次加入定量的甲苯、助催化劑、新型鐵配合物的甲苯溶液,在設定的溫度和壓力下反應。反應結束后在冰浴中迅速降溫、卸壓,用質量分數為5%的酸化乙醇終止反應后進行定量分析。
2.1助催化劑對乙烯齊聚的影響
目前,MAO與MMAO(通常含有質量分數為20%~25%的三異丁基鋁)仍然是2-亞胺-1,10-菲咯啉基鐵或鈷配合物催化乙烯齊聚最常用的助催化劑。MAO是三甲基鋁部分水解的產物,從表面看,反應原理十分簡單,但由于鋁原子的缺電子性,使MAO的組成及結構復雜。因此,MAO很可能是線型結構、環狀結構、簇狀結構的混合物[18]。
以新型鐵配合物為主催化劑,分別以MMAO,MAO,TEAL為助催化劑進行乙烯齊聚。從表1可以看出:以MAO或MMAO為助催化劑時的催化劑活性遠高于TEAL。以TEAL為助催化劑,催化劑活性均小于1.00×106g/(mol·h)。MMAO用量對催化劑活性的影響也很顯著,n(Al)∶n(Fe)為800時,催化劑活性最高,為33.7×106g/(mol·h)。作為助催化劑,MMAO不僅幫助產生活性物種,還起到清雜的作用,即清除溶劑或原料中的雜質。因此,MMAO少量過量對反應有利,然而,過量太多,n(Al)∶n(Fe)大于800后,催化劑活性下降,是由于異丁基會影響乙烯的插入所致[19-20]。MAO用量對催化劑活性的影響與MMAO類似,n(Al)∶n(Fe)為1 000時,催化劑活性最高,為38.7×106g/(mol·h)。
K值可以表征齊聚產物的分布情況,K值隨催化劑種類、反應條件的變化而變化。其計算公式為:K=鏈增長速率/(鏈增長速率+鏈轉移速率)=Cn+2的物質的量/Cn的物質的量=C14的物質的量/C12的物質的量(通常)[21-22]。從表1還可以看出:無論是MMAO還是MAO作助催化劑,隨著n(Al)∶n(Fe)的增加,對α-烯烴的選擇性均沒有明顯的影響,但K值呈先增長后降低的趨勢,即產物分布先向高碳數方向移動再向低碳數方向移動。這是由于鏈增長速率和鏈轉移速率的變化不同所致。

表1 不同助催化劑對乙烯齊聚的影響Tab. 1 Effect of different cocatalysts on ethylene oligomerization
2.2反應溫度對乙烯齊聚的影響
主催化劑用量為1 μmol,MMAO為助催化劑,甲苯溶劑用量為100 mL,n(Al)∶n(Fe)為800,反應壓力為1.0 MPa,反應時間為30 min。從表2可以看出:隨著反應溫度的升高,催化劑活性下降,K值減小。這說明盡管升高溫度能提高鏈增長和鏈轉移速率,但鏈轉移速率的增長幅度較鏈增長速率大,所以低碳數的烯烴成為主要產物。溫度升高,催化劑活性呈下降趨勢則是兩個因素共同作用的結果[23]:一方面,溫度升高導致乙烯在溶劑中的濃度降低;另一方面,溫度升高,增加了活性中心的失活速率,導致活性下降。

表2 反應溫度對乙烯齊聚的影響Tab. 2 Effect of reaction temperature on ethylene oligomerization
2.3反應壓力對乙烯齊聚的影響
主催化劑用量為1 μmol,MMAO為助催化劑,甲苯溶劑用量為100 mL,n(Al)∶n(Fe)為800,反應溫度為40 ℃,反應時間為30 min。從表3可以看出:隨著反應壓力增加,催化劑活性逐漸升高。這是因為反應壓力增加,體系中的乙烯單體濃度增大,使鏈增長和鏈轉移速率加快,因此催化劑活性升高[24-25]。因鏈轉移速率增長幅度較鏈增長速率大,所以齊聚產物向低碳數方向移動。從表3中還可以看出:隨著壓力的增加,α-烯烴的選擇性提高。這是因為低壓時,與活性物種配位的乙烯相對較少,在乙烯發生配位進行鏈轉移之前,較多的活性物種就發生了β-H消除反應,因此會產生帶支鏈的齊聚物;而當壓力較高時,乙烯配位發生在β-H消除反應之前,β-H直接向配位乙烯的轉移能產生更多的α-烯烴。

表3 反應壓力對乙烯齊聚的影響Tab. 3 Effect of reaction pressure on ethylene oligomerization
a)新型鐵配合物——氯化2-正丁酰基-1,10-菲咯啉縮2,6-二乙基苯胺合鐵(Ⅱ)在助催化劑MMAO的作用下,用于乙烯齊聚表現出很高的活性而且對α-烯烴具有很好的選擇性。
b)MAO,MMAO為助催化劑時,催化劑的活性相當,而TEAL作助催化劑時,催化劑的活性相對較差。
c)反應溫度、反應壓力和n(Al)∶n(Fe)對催化劑活性和產物分布均有較大影響。
[1] Reagen W K,Conroy B K. Chromium compounds and uses thereof :US,5288823A[P].1994-02-22.
[2] Zieger K,Martin H. Production of dimers and low molecular polymerization products from ethylene: US,2943125A[P].1960-06-28.
[3] Keim W,Kowaldt F H,Goddard R,et al. α-amino acids as nucleophilic acyl equivalents:synthesis of ketones and aldehydes using oxazolin-5-ones[J]. Angew Chem,1978,90 (6):493-495.
[4] Small B L,Brookhart M,Bennett A M A. Highly active iron and cobalt catalysts for the polymerization of ethylene[J]. J Am Chem Soc,1998,120(16):4049-4050.
[5] Britovsek G J P,Gibson V C,Kimberley B S,et al. Novel olefin polymerization catalysts based on iron and cobalt[J]. Chem Commun,1998(7):849-850.
[6] Ma Jing,Feng Chun,Wang Shaoli,et al. Bi- and tri-dentate imino-based iron and cobalt pre-catalysts for ethylene oligo-/ polymerization[J]. Inorg Chem Front,2014,1(1):14-34.
[7] Zhang Wen,Sun Wenhua,Redshawa C. Tailoring iron complexes for ethylene oligomerization and/or polymerization[J]. Dalton Transactions,2013,42(25):8988-8997.
[8] Ittel S D,Johnson L K,Brookhart M. Late-metal catalysts for ethylene homo- and copolymerization[J]. Chem Review,2000,100(4):1169-1203.
[9] Bianchini C,Giambastiani G,Rios I G,et al. Ethylene oligomerization,homopolymerization and copolymerization by iron and cobalt catalysts with 2,6-(bis-organylimino)pyridyl ligands coord[J]. Chem Review,2006,250(11/12):1391-1418.
[10] Gibson V C,Redshawa C,Solan G A. Bis(imino)pyridines: surprisingly reactive ligands and a gateway to new families of catalysts[J]. Chem Review,2007,107(5): 1745-1776.
[11] Small B L,Rios R,Fernandez E R,et al.Oligomerization of ethylene using new iron catalysts bearing pendant donor modified α-diimine ligands[J]. Organometallics,2007,26(7):1744-1749.
[12] Sun Wenhua,Jie Suyun,Zhang Shu,et al. Iron complexes bearing 2-imino-1,10-phenanthrolinyl ligands as highly active catalysts for ethylene oligomerization[J]. Organometallics,2006,25(3):666-677.
[13] Wang Leyong,Sun Wenhua,Han Lingqin,et al. Late transition metal complexes bearing 2,9-bis(imino)-1,10-phenanthrolinyl ligands: synthesis,characterization and their ethylene activity[J]. J Organomet Chem,2002,658(1/2):62-70.
[14] Sun Wenhua,Tang Xiubo,Gao Tielong,et al. Synthesis,characterization,and ethylene oligomerization and polymerization of ferrous and cobaltous 2-(ethylcarboxylato)-6-iminopyridyl[J]. Complexes Organometallics, 2004,23(21):5037-5047.
[15] Jie Suyun,Zhang Shu,Sun Wenhua,et al. Iron(Ⅱ) complexes ligated by 2-imino-1,10-phenanthrolines: preparation and catalytic behavior toward ethylene oligomerization[J]. J Mol Catal A:Chem,2007,269(1/2):85-96.
[16] Zhang Min,Zhang Wenjuan,Xiao Tianpengfei,et al. 2-ethylketimino-1,10-phenanthroline iron(Ⅱ) complexes as highly active catalysts for ethylene oligomerization[J]. Journal of Molecular Catalysis A: Chemical,2010,320(1/2):92-96.
[17] 劉珺,鄭明芳,王懷杰,等. 丁酰基取代的1,10-菲咯啉配合物的制備方法及由此制備的配合物作為乙烯齊聚催化劑的應用:中國,102485732B[P]. 2015-01-14.
[18] Glaser Rainer,Sun Xinsen. Thermochemistry of the initial steps of methylaluminoxane formation. Aluminoxanes and cycloaluminoxanes by methane elimination from eimethylaluminum hydroxide and its dimeric aggregates[J]. J Am Chem Soc,2011,133(34):13323-13336.
[19] Chen E Y X,Marks T J. Cocatalysts for metal-catalyzed olefin polymerization: activators,activation processes,and structure-activity relationships[J]. Chem Review,2000,100 (4): 1391-1434.
[20] Karam A R,Catar?' E L,Lo'pez-Linares F,et al. Synthesis,characterization and olefin polymerization studies of iron(Ⅱ) and cobalt(Ⅱ) catalysts bearing 2,6-bis(pyrazol-1-yl)pyridines and 2,6-bis(pyrazol-1-ylmethyl)pyridines ligands[J]. Appl Catal A: Gen,2005,280(2):165-173.
[21] Meurs M V,Britovsek G J P,Gibson V C,et al. Polyethylene chain growth on zinc catalyzed by olefin polymerization catalysts: a comparative investigation of highly active catalyst systems across the transition series[J]. J Am Chem Soc,2005,127(27): 9913-9923.
[22] Britovsek G J P,Cohen S A,Gibson V C,et al. Iron catalyzed polyethylene chain growth on zinc: a study of the factors delineating chain transfer versus catalyzed chain growth in zinc and related metal alkyl systems[J]. J Am Chem Soc,2004,126 (34): 10701-10712.
[23] Britovsek G J P,Mastroianni S,Solan G A,et al. Oligomerisation of ethylene by bis(imino)pyridyliron and -cobalt complexes[J]. Chem Eur J,2000,6(12):2221-2231.
[24] Jie Suyun,Zhang Shu,Sun Wenhua. 2-arylimino-9-phenyl-1,10-phenanthrolinyl-iron,-cobalt and -nickel complexes:synthesis,characterization and ethylene oligomerization behavior[J]. Eur J Inorg Chem,2007(35): 5584-5598.
[25] Xiao Liwei,Gao Rong,Sun Wenhua. 2-(1H-2-benzimidazolyl)-6-(1-(arylimino)ethyl)pyridyl Iron(Ⅱ) and cobalt(Ⅱ) dichlorides: syntheses,characterizations,and catalytic behaviors toward ethylene reactivity[J]. Organometallics,2009,28(7):2225-2233.
Novel iron(Ⅱ) complex as highly active pre-catalyst for ethylene oligomerization
Zheng Mingfang,Liu Jun,Wang Huaijie,Zhang Haiying
(Yanshan Branch of Beijing Research Institute of Chemical Industry,SINOPEC,Beijing 102500,China)
Abstract:Iron(Ⅱ) complex ligated by 2-n-propyl-ketimino-1,10-phenanthroline(2,6-diethylanil) is synthesized and used as main catalyst with methylaluminoxane (MAO),modified MAO(MMAO) and triethyl aluminum (TEAL) as co-catalyst respectively for ethylene oligomerization. The results show that the catalytic activities activated with MAO or MMAO are much higher than those with TEAL under the same conditions. The catalytic activity of the catalyst goes up then drops with the increasing of Al/Fe mole ratio with MMAO as cocatalyst,and the catalytic activity reaches the highest of 3.37×107g/(mol·h) when n(Al)∶n(Fe) is 800. In addition,the catalytic activity falls with the reaction temperature increasing,the product distribution shifts to low carbon; the catalytic activity rises followed by the pressure,and the product distribution shifts to low carbon as well.
Keywords:ethylene oligomerization; iron(Ⅱ) complex; α-olefin; oligomer
作者簡介:鄭明芳,女,1976年生,博士,2006年畢業于北京理工大學環境工程專業,現主要從事α-烯烴技術開發與應用方面的研究工作。聯系電話:(010)69346300;E-mail:zhengmf.bjhy@sinopec.com。
收稿日期:2016-01-29;修回日期: 2016-03-10。
中圖分類號:TQ 426.92
文獻標識碼:B
文章編號:1002-1396(2016)03-0040-05