高松

摘 要
MATLAB軟件是上世紀八十年代興起的實驗室計算軟件,近年來趨勢外推預測法以及灰色預測法廣泛被應用到預測投資額以及銷售額上,本論文就是趨勢外推法的應用。說明MATLAB軟件預測功能可以主導評價者預先知道投資額以及銷售額,進而控制投資,預先準備庫存等。
【關鍵詞】外推預測法;線性回歸;灰色預測法
1 線性回歸基本理論
線性回歸是利用數理統計中的回歸分析,來確定兩種或兩種以上變量間相互依賴的定量關系的一種統計分析方法,運用十分廣泛。分析按照自變量和因變量之間的關系類型,可分為線性回歸分析和非線性回歸分析。
在統計學中,線性回歸(Linear Regression)是利用稱為線性回歸方程的最小平方函數對一個或多個自變量和因變量之間關系進行建模的一種回歸分析。這種函數是一個或多個稱為回歸系數的模型參數的線性組合。只有一個自變量的情況稱為簡單回歸,大于一個自變量情況的叫做多元回歸。(這反過來又應當由多個相關的因變量預測的多元線性回歸區別,而不是一個單一的標量變量。)
回歸分析中,只包括一個自變量和一個因變量,且二者的關系可用一條直線近似表示,這種回歸分析稱為一元線性回歸分析。如果回歸分析中包括兩個或兩個以上的自變量,且因變量和自變量之間是線性關系,則稱為多元線性回歸分析。
在線性回歸中,數據使用線性預測函數來建模,并且未知的模型參數也是通過數據來估計。這些模型被叫做線性模型。最常用的線性回歸建模是給定X值的y的條件均值是X的仿射函數。不太一般的情況,線性回歸模型可以是一個中位數或一些其他的給定X的條件下y的條件分布的分位數作為X的線性函數表示。像所有形式的回歸分析一樣,線性回歸也把焦點放在給定X值的y的條件概率分布,而不是X和y的聯合概率分布(多元分析領域)。
線性回歸是回歸分析中第一種經過嚴格研究并在實際應用中廣泛使用的類型。這是因為線性依賴于其未知參數的模型比非線性依賴于其位置參數的模型更容易擬合,而且產生的估計的統計特性也更容易確定。
線性回歸有很多實際用途。分為以下兩大類:
如果目標是預測或者映射,線性回歸可以用來對觀測數據集的和X的值擬合出一個預測模型。當完成這樣一個模型以后,對于一個新增的X值,在沒有給定與它相配對的y的情況下,可以用這個擬合過的模型預測出一個y值。
給定一個變量y和一些變量X1,...,Xp,這些變量有可能與y相關,線性回歸分析可以用來量化y與Xj之間相關性的強度,評估出與y不相關的Xj,并識別出哪些Xj的子集包含了關于y的冗余信息。
線性回歸模型經常用最小二乘逼近來擬合,但他們也可能用別的方法來擬合,比如用最小化“擬合缺陷”在一些其他規范里(比如最小絕對誤差回歸),或者在橋回歸中最小化最小二乘損失函數的懲罰.相反,最小二乘逼近可以用來擬合那些非線性的模型.因此,盡管“最小二乘法”和“線性模型”是緊密相連的,但他們是不能劃等號的。
2 舉例分析
(1)我國1980-2007年投資額如表1所示,用擬合曲線法建立年份與投資額的關系,并預測2008年的投資額
3 結論
利用MATLAB軟件進行趨勢外推預測法以及加權擬合是可行的。