999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

On the Quadratic Twists of Gross Curves

2016-05-06 01:51:00LIKezhengRENYuan

LI Kezheng, REN Yuan

(Department of Mathematics, Capital Normal University, Beijing 100037)

?

On the Quadratic Twists of Gross Curves

LI Kezheng,REN Yuan

(DepartmentofMathematics,CapitalNormalUniversity,Beijing100037)

Abstract:In this paper, we use 2-descent method to compute the 2-Selmer group for some twists of the elliptic curves constructed by Gross. As a result, we can verify the BSD conjecture for some of them by combining results about L-values.

Key words:complex multiplication; descent; BSD; graph

2010 MSC:11G05; 11G15

1Introduction

The arithmetic of elliptic curves over a number field has been an area of great interests in number theory.LetEbe an elliptic curve defined over a number fieldF. The Mordell-Weil theorem tells us thatE(F) is a finitely generated abelian group, but it is usually difficult to determine the rank (called Mordell-Weil rank). One can estimate the rank by computing various Selmer groups, for example the 2-Selmer groups.

In [1-2], for the congruent elliptic curveE(n):y2=x3-n2xwith rational integern, Feng gave some conditions for when the 2-Selmer group is the smallest, i.e. the 2-Selmer group is just the 2-torsion points. In recent years, much effort have been devoted to the study of the congruent number elliptic curveE:y2z=x3-xz2[3-4]. In particular, Y. Tian[5-6] has made a breakthrough .

In this paper, we will study a similar question for the elliptic curves considered by Gross in [7]. LetKbe an imaginary quadratic extension of the rational fieldQ,andHbeitsHilbertclassfield.AnellipticcurveEdefinedoverHwithcomplexmultiplication(CMforshort)byO=OKiscalledaQ-curve if for anyσ∈ Gal(H/Q),EσisH-isogenous toE.

suchthat

and any two of them differs from an action of Gal(H/K).

Let

then it corresponds to anH-isogeny class [C] ofQ-curveswithCMbyOK. This is theQ-curvesconsideredin[7].Itiseasytoseetheconductorofχpisπandforanyrationald,theconductoroftheassociatedcharacterof[C(d)]islargerthanπ.

In[7],Grossestablishedthebasicpropertiesofthesecurves.Inparticular,heobservedthatonecanintroduceanaturalactionofGal(H/K)ontheSelmergroupsandthenreducesomecalculationfromHtoK (wewillbrieflyexplainthisinthenextsection).HealsocomputedSel2(E/H)Gal(H/K)forE∈[C],andshowedE(H)=E[2].

Inthispaper,wewillcomputeSel2(E(d)/H)Gal(H/K)foralltheintegersdsuchthatd≡1(mod4),whereE(d)isthetwistofEbyd (in[8]).

Leth=hKbe the class number ofK, then

Definition1.1Letd≡1(mod4)andfi,gj,Qkasabove.

Definea(oriented)graphGasfollowing:

Vertexof

Recallthatagraphiscalledanoddgraphifeachnon-trivialpartitionofitisanoddpartition.Themainresultis

Theorem1.2Foreveryd≡1(mod4),wehave

wheretis the number of even partitions ofG.

In particular,S(d)is minimal if and only ifGis an odd graph.

We will prove this theorem in the third section after reviewing the descent method in the next section. Then we will give some numerical examples and discuss some consequences related to the BSD conjecture.

Note that elliptic curves over finite field is useful in designing cryptograph, see for example [9] and [10]. It is hoped that the results here will also be useful in such problems.

2Descent method forQ-curves

Firstweintroducethefollowingnotations:

K=animaginaryquadraticextensionoverQ;

O=theintegerringofK;

ELL(O)={ellipticcurveoverCwithCMbyO } up to C-isomorphism;

H= the Hilbert class field ofK;

ELLH(O)={elliptic curve overHwith CM byO}uptoH-isomorphism;

Recall the following basic facts from CM theory, in [7]:

(iii) for any rational primel,wehave

We now review theH-isomorphic andH-isogenous classifications of elliptic curves with CM byO.

(i) There is a bijection

(ii)Thereisabijection

Lemma2.3ForanyE∈ELLH(O)andψ:GH→O×a continuous homomorphism, letEψdenote twist ofEbyψ(note thatO×=Aut(E)),then

LetwbeaplacewhereχEψ, ψ·χEandψareallunramified.Thenfromψσ(w)=φ-1°φσ(w),wehave

Sothatasmorphism,wehave

whichimpliesthatψσ(w)·χE(w)=χEψ(w)byactingontheinvariantdifferential.

ThenχE2=ψ·χE1.

ProofAsintheproofofLemma2.3,forallbutfinitelymanyw,because

whichmeans

thenwehaveχE2=ψ·χE1.

Recall the definition ofQ-curves:

We will now describe the descent method used in [7].

Lemma 2.6LetE∈ELLH(O) be aQ-curve.Thenforanyσ∈Gal(H/Q),

Hom(Eσ,E)/2Hom(Eσ,E)?O/2O.

ProofAssumeE[2]isgeneratedbyPoverO/2O,soEσ[2]isgeneratedbyPσ.Forany

let[aφ]∈O/2Osuchthat

thisgivesahomomorphism

which is obviously injective. On the other hand, the density theorem implies that this homomorphism is surjective.

Recall that from

we get the following diagram (Fig.1):

0→E(H)/2E(d)(p)δ→H1(GH,E[2])→H1(GH,E[2])→0↓↓↓0→∏E(Hv)/2E(d)(p)(Hv)δv→∏H1(GHv,E[2])→∏H1(GHv,E[2])→0

Fig. 1

Definition 2.7Define the Selmer group

Sel2(E/H)=

{x∈H1(GH,E[2]):Resv(x)∈im(δv),forallplacesv},

and the Tate-Shafarevich group

For anyQ-curvesE,wecangiveE(H)/2E(H),Sel2(E/H)andШ(E/H)[2]astructureofGal(H/Q)-modulebyusingLemma2.6asfollowing,

(i)Foranyσ∈Gal(H/K)and

define

whereφ∈Hom(Eσ,E)ischosensothatφmapsto1undertheisomorphisminLemma2.6;

(ii)Foranyσ∈Gal(H/K)andx∈Sel2(E/H),define

whereφ∈Hom(Eσ,E)ischosensothatφmapsto1undertheisomorphisminLemma2.6;

(iii)Foranyσ∈Gal(H/K)andx∈ Ш(E/H)[2],define

whereφ∈Hom(Eσ,E)ischosensothatφmapsto1undertheisomorphisminLemma2.6.

Itiseasytoverifytheaboveactionsareindependentofthechooseofφ.

Proposition2.8Theexactsequence

is an exact sequence of Gal(H/Q) modules.

ProofIt is enough to showδis a homomorphism of Gal(H/Q)-modules.

For anyP∈E(H)/2E(H), assume [2]Q=P, thenδ(P)(g)=Qg-Q, for anyg∈GH. Chooseφ∈Hom(Eσ,E) such thatφ≡1(2), then we have by definitionσ(P)=φ(Pσ), so

the proposition then follows.

RemarkIt is easy to see that all the results in this section hold forE(H)/ωE(H), Selω(E/H) and Ш(E/H)[2] for anyω∈O.ItisinterestingtoknowtheGal(H/K)-modulestructureofE(H)/ωE(H),Selω(E/H)andШ(E/H)[2]foranyω∈O.

3Main thoerem

Proposition 3.1 Notation as above and let [C] be the isogeny class corresponding theχpin section 1, we have:

(i) For anyE∈[C] andda rational integer prime top, letF=Q(j(E)), then the root number ofL(E(d)/F,s) is the sign ofd;

(ii) For anyE∈[C] andda rational integer prime top, we haveE[2]=E(H)tor;

(iii) Under the action of Gal(H/K), we have

with some integern(d), so that

Inparticular,wehave

Lemma 3.2 For anyE1,E2∈[C], we have

Sel2(E1/H)?Sel2(E2/H)

as Gal(H/K)-modules.

ProofAsEi[2]?Ei(H), we have

sendingψ∈ Hom(GH,E1[2]) toφ°ψ. We know from Proposition 3.1 thatEi[2] are trivial Gal(H/K)-modules. So for anyψ∈ Hom(GH,E1[2]),g∈GHandσ∈ Gal(H/K), we have

i.e.ψis a homomorphism of Gal(H/K)-modules. And this gives the desired homomorphism between Sel2(E1/H) and Sel2(E2/H).

In the following, we writeS(d)for

By Lemma 3.2, we only need to computeS(d)for any fixedE∈[C]. But we have the following.

Lemma 3.3There is a uniqueE(p) overFwith

Proof[7]We will do the computation for thisE(p).Recall that from

we get the following diagram (Fig.2):

0→E(d)(p)(H)2E(d)(p)δ→H1(GH,E(d)(p)[2])2→H1(GH,E(d)(p))[2]→0↓↓0→∏E(d)(p)(Hv)2E(d)(p)(Hv)δv→∏H1(GHv,E(d)(p)[2])→∏H1(GHv,E(d)(p))[2]→0

Fig. 2

Lemma 3.4 There is a basis ofE(d)(p)[2], such that

for all placesvofHoverω, and

wehave

which is even. If 2|y, then 2│/xbecause 2│/fω, then

is odd which is a contradiction, so 2│/yandavis odd. Now it follows thatE(p)(d)has good ordinary reduction because its character differs fromχpby a quadratic character unramified over 2.

From [11], Lemma 3.5, there is a unique two torsion pointP1such thatP1≡O(modω).Because

Tostatetheresults,weintroducethefollowingnotations.

Let

Lemma3.5Fromthenotationasabove,wemayassume

withai≡1(mod 4) andv2(bi)=1;

is odd, so it is easy to see that 2│/aibut 2|bi, and hence we can multiply it by ±1 so thatai≡1(mod 4).

becausehis odd by the genus theory, so

i.e.bi+2(ai-1)≡2(mod 4), then we havebi≡2(mod 4).

The proof for the second assertion is similar.

Lemma 3.6 Letd≡1(mod 4) be an integer and notations as above,then we have

(i)E(d)(p) has good reduction at all the places not dividingpd;

(ii) There is a basis ofE(d)(p)[2], such that

wherea,…,vk′=0 or 1;

(iii) For anyv│/ 2, we have #im(δv)=4.

Proof(i) This is becauseE(p) only has bad reduction at the places overpanddis congruent to 1 mod 4;

(ii) Note that by the genus theory, the order of Gal(H/K) is odd, so bothH1(Gal(H/K),E[2]) andH1(Gal(H/K),E[2]) are zero. Then by the Serre-Hoschild exact sequence, we have

and soS(d)?H1(GK,E[2]).

withai,…,vk=0,1 and similarly forβ.

(iii) Supposev│/ 2. By the theory of formal groups, there isM?E(d)(p)(Hv) such thatM?OvandE(d)(p)(Hv)/Misfinite.Considerthefollowingdiagram(Fig.3):

0→M→E(d)(p)(Hv)→E(d)(p)(Hv)/M→02↓2↓2↓0→M→E(d)(p)(Hv)→E(d)(p)(Hv)/M→0

Fig. 3

Apply Snake Lemma, we get

Butasv│/ 2,thenwehave|Ov[2]|=|Ov/2Ov|=1 and the result follows;

(iv) Just by the definition of the Selmer group.

From Lemma 3.6 we know that to computeS(d), it is necessary to know the image ofE(d)(p)[2] underδ. For this, we have the following.

Lemma 3.7For anyd∈Z,thereisabasisofE(d)(p)[2]suchthat

Andwehave

foranyv|pd.

ProofForthefirstassertion,itisenoughtoverifythisforthecased=1.FixthebasisasinLemma3.4.

TakeaWeierstrassequationoverHof

withΔ(E(p))=-p3.SinceE(p)haspotentiallygoodreductioneverywhere,wecanfindsomefiniteextensionofHsuchthatE(p)hasgoodreductionatπ.Thenachangeofcoordinatesoftheform

gives a Weierstrass equationE(p):f(X,Y)=0withgoodreductionatπ.NoticethatPi=(ei,0)’sarethe2-torsionpoints,wehave

andthenvπ(ei-ej)≥ 1.ButΔ(E(p))=-p3implies

hence we havevπ(ei-ej)=1.

By [8], Proposition 14, we have

Since Lemma 3.6 implies thatxi,yi≡(-1)aπbwitha,b=0 or 1, by combining the above results and Lemma 3.4, we have

For the second assertion, we note that the four elements

Now we can prove our main theorem which gives a complete description of the elements inS(d)ford≡1(mod 4).

Theorem 3.8 (α,β)∈S(d)is equivalent to (α,β)∈Hdand there is

ProofThis follows from the definition of Selmer group, combining with Lemma 3.6 and Lemma 3.7.

In practice, one can always computeS(d)by Theorem 3.8 as the examples above. In the following, we give a graphical description of it, which seems more convenient to use.

Definition 3.9Letd≡1(mod 4) andfi,gj,Qkas in Lemma 3.5.

Define a (oriented) graphGas following.

vertex of

ProofofTheorem1.2DefinegraphG′withvertex

isanisomorphism,i.e.thereisanarrowfromxtoyifandonlyifthereisanarrowfromφ(x)toφ(y),whichisobvious.

4Numericalexamples

(iii)IfQ1andQ2areprimessuchthat

Proof(i) IfQis congruent to 3 modulo 4. By Hensel lemma, it is enough to solve

This is equivalent toa2-pb2≡0(Q) and

IfQiscongruentto1modulo4,then

so the equation doesn’t have any solutions.

(ii) This is well known ifQis congruent to 1 modulo 4. But (1) above implies this is also true forQcongruent to 3 modulo 4.

(iii) By Hensel lemma, it is enough to solve

ifandonlyifQi≡1(mod4)foranyi=1,…,n.

Moreover,wehaverankO/ 2OS(d)≥ 1+k, wherekis the number of thoseQiwhich is congruent to 3 module 4.

ProofIf all theQiare congruent to 1 module 4, we want to show that (α,β)∈S(d)implies (α,β)∈im(E(d)(p)[2]).

Suppose there is some (α,β)∈S(d)not in

then eitherα≠1,-πorβ≠1,π.

by Lemma 4.1. Now the claim follows from Lemma 3.6, (iv). This completes the first assertion.

By the above, we see that we always have

forQi≡3(mod 4). Since these elements are linearly independent inSd, we complete the proof.

Corollary 4.3Letdbe as in Proposition 4.2 withd>0 and

p>4d2lg|d|,

then the BSD conjecture is true forE(d)(p) and

In particular, we can construct arbitrarily large Shafarevich-Tate group by choosingplarge enough anddcontains enoughQwhich is congruent to 3 modulo 4.

ProofUnder the assumptions ond, we have

by the main theorem of [12]. So by the Coates-Wiles theorem (see [13]), we know that

and the assertions follows immediately from Theorem 1.2.

Proof(i)Write

thena≡1(mod 4) andv2(b)=1 as in Lemma 3.5.By Theorem 8.3 of [14], we have

But asf≡1(mod)ω2and

Because2|b,wehave

a2+ab≡1+ab≡qh(mod 8).

Thenifq≡3(mod8),wehaveb≡2(mod8);ifq≡7(mod8),wehaveb≡6(mod8),sothat

always holds. This finishes the proof of (i).

Assume|-b|=2ecwithcodd,then

Because

Proposition4.5Ifq≡3(mod4)splitsinK,then

rankO/ 2OS(q*)=3.

References

[1] 馮克勤. 非同余數和秩零橢圓曲線[M]. 合肥:中國科學技術大學出版社,2008.

[2] FENG K Q. Non-congruent number. odd graphs and the BSD conjecture[J]. Acta Arith,1996,75(1):71-83.

[3] 韓冬春. 關于橢圓曲線Ed2:y2=x3-d2x的BSD猜想[J]. 四川大學學報(自然科學版),2013,50(3):470-476.

[4] 佘東明. 關于橢圓曲線Ed2:y2=x3-d2x的Artin Root Number的計算[J]. 四川大學學報(自然科學版),2013,50(4):668-674.

[5] TIAN Y . Congruent numbers and Heegner points[J]. Cambridge J Math,2014,2(2):117-161.

[6] TIAN Y . Congruent numbers with many prime factoirs[J]. PNAS,2012,109(52):21256-21258.

[7] GROSS B. Atithmetic of Elliptic Curves with Complex Multiplication[M]. Berlin:Springer-Verlag,1980.

[8] SILVERMAN J H. The Arithmetic of Elliptic Curves (Graduate Texts in Mathematics)[M]. 2nd ed. New York:Springer-Verlag,2009.

[9] 廖群英,李俊. 有限域上Reed-Solomon碼的一個注記[J]. 四川師范大學學報(自然科學版),2010,33(4):540-544.

[10] 廖群英,蒲可莉,葉亮節. 關于q元非對稱糾錯碼[J]. 四川師范大學學報(自然科學版),2013,36(4):643-648.

[11] BRUMER A, KRAMER K. The rank of elliptic curves[J]. J Duke Math,1977,44(4):715-743.

[12] YANG T. Nonvanishing of certein Hecke L-series and rank of certein elliptic curves[J]. Composition Math,1999,117(3):337-359.

[13] COATES J, WILES A. On the conjecture of Birch and Swinnerton-Dyer[J]. Invent Math,1977,39:223-251.

[14] NEUKRICH J. Algebraic Number Theory[M]. New York:Springer-Verlag,1999.

[15] SERRE J. A Course in Arithmetic[M]. New York:Springer-Verlag,1973.

doi:10.3969/j.issn.1001-8395.2016.01.007

Received date:2015-08-27

Foundation Items:This work is supported by the National Key Basic Research 973 Program of China (2013CB834202)

主站蜘蛛池模板: 国产福利免费视频| 亚洲一区二区在线无码| 成人福利免费在线观看| 国产人免费人成免费视频| 欧美日韩在线第一页| 看你懂的巨臀中文字幕一区二区| 91免费观看视频| 国产精品久久久久婷婷五月| 呦系列视频一区二区三区| 国产免费久久精品99re丫丫一| 在线观看免费国产| 久久无码高潮喷水| 91丝袜在线观看| 午夜久久影院| 亚洲成av人无码综合在线观看| 一区二区在线视频免费观看| 色婷婷在线播放| 日本高清在线看免费观看| 99热最新在线| 视频二区国产精品职场同事| 亚洲动漫h| 国产毛片高清一级国语| 少妇人妻无码首页| 国产精欧美一区二区三区| 新SSS无码手机在线观看| 18禁黄无遮挡网站| 国产免费羞羞视频| 91亚瑟视频| 欧美性色综合网| 中文字幕2区| 欧美怡红院视频一区二区三区| 欧美亚洲另类在线观看| 欧美亚洲国产精品第一页| 日韩精品免费一线在线观看| 美女无遮挡拍拍拍免费视频| 亚洲一区二区精品无码久久久| 日本在线亚洲| 99热精品久久| 国产福利小视频在线播放观看| 亚洲男人天堂2018| 国产精品页| 久久久久久午夜精品| 青青草原国产一区二区| 自拍欧美亚洲| 亚洲国产精品日韩欧美一区| 国产日韩欧美在线视频免费观看 | 国产精品亚洲片在线va| 欧美亚洲第一页| 九九免费观看全部免费视频| 亚洲综合片| 国产精品区视频中文字幕| 欧美三级自拍| 国产精品对白刺激| 综合社区亚洲熟妇p| 国禁国产you女视频网站| 天天做天天爱天天爽综合区| 无码一区18禁| 91九色国产porny| 国产女人18毛片水真多1| 国产精品视频系列专区| 免费人成黄页在线观看国产| 日本在线亚洲| 欧美视频在线不卡| 亚洲欧美在线看片AI| 2021国产乱人伦在线播放| 青青草原国产免费av观看| 精品撒尿视频一区二区三区| 国产一区二区三区夜色| 日本免费高清一区| 日本久久免费| 嫩草影院在线观看精品视频| 91精品国产自产在线老师啪l| 亚洲九九视频| 国产极品美女在线观看| 久久永久精品免费视频| 1769国产精品免费视频| 国产精品欧美日本韩免费一区二区三区不卡 | 亚洲人免费视频| 婷婷五月在线| 久久国产香蕉| 国产成人精品一区二区不卡| 一本色道久久88亚洲综合|