摘 要:大腦神經信號(如神經元放電信號、局部電位信號)的解析是現在神經科學、認知科學等學科的重要研究領域。對腦部信號的解析將會幫助我們了解大腦的編碼、解碼方式,進而設計出多樣的腦機交互接口,并有可能應用到工業生產、醫療器械等方面。該文的研究由課題一提供猴腦信號數據,由課題三對數據進行了整理,并使用機器學習的方法對數據進行了一定的分析,比如:根據數據本身的特征進行了簡單的分類;觀察了數據的相關性;利用特異神經元的性質嘗試設計分類器,通過猴腦信號對實驗類型進行一定的預測。
關鍵詞:腦機接口 神經解碼 行為選擇
Abstract:Decoding of the brain neural signals (such as the spike signals and the local field potential) is an important field of the neuroscience and cognitive science. The analysis of brain neural signals will help us understand the brain’s encoding and decoding principles better, and then design a variety of brain-machine interfaces. This research may be finally applied to industrial production, medical equipment and other aspects. The research is based on the data provided by Project One, and the data analysis is provided by Project Three by using machine learning methods. Machine learning methods include simple clustering of data, computing correlation of the data from different parts of the cortex, making use of the nature of the specific neurons to design classifiers, in order to predict the pattern of experiment trials through monkey brain signals.
Key Words:Brain-machine interface; Neural decoding; Behavioral choice
閱讀全文鏈接(需實名注冊):http://www.nstrs.cn/xiangxiBG.aspx?id=48280flag=1