999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

半空間上MHD方程弱解的衰減下界

2016-04-20 06:46:50
東華大學學報(自然科學版) 2016年1期

呂 鍇

(東華大學 理學院, 上海 201620)

?

半空間上MHD方程弱解的衰減下界

呂鍇

(東華大學 理學院, 上海 201620)

摘要:研究了磁流體力學(MHD)方程的弱解在半空間+上的衰減性質,通過建立一族產生弱衰減的初值, 得到了MHD方程的衰減下界.

關鍵詞:磁流體力學(MHD)方程; 半空間; 衰減下界

磁流體力學(MHD)方程的一般形式為

(1)

對于方程(1)的Cauchy問題,文獻[1]構造了一類類似于Navier-Stokes方程的Leray-Hopf弱解的整體弱解.在全空間n上方程(1)的Cauchy問題的衰減性質的研究上,已有不少研究成果.文獻[2-3]在文獻 [4]的基礎上研究了強解的衰減性質.而對于弱解的衰減性質的研究,可以參見文獻[5-7].然而上述針對全空間n問題的結論,大多使用Fourier變換法,并不適用于半空間+∶={x=(x1,x2, …,xn)∈n;xn>0}問題.對于半空間上的MHD方程,文獻[8]研究了弱解的L2衰減.文獻[9]證明了當半空間上的Navier-Stokes方程(N-S)的初值在滿足一定條件的情況下,可以得到N-S弱解的衰減下界的估計.本文在文獻[9]研究成果的基礎上,得到了半空間+上的MHD方程的相關結論.

(2)

1主要結論

在介紹本文的主要結論之前,首先給出一些符號的定義.

簡便起見,將Ar簡寫為A.

下面給出方程(2)弱解的定義[10].

定義1.1若(u,B)滿足以下條件:

-(u(t), φ(t))+(u(s), φ(s))

-(B(t), φ(t))+(B(s), φ(s)),

(3)

(iii) 能量不等式

(4)

則稱(u,B)為方程(2)在上的弱解.

其中:m≥0, α, γ, δ>0.

假設考慮滿足以下條件的初值:

(A2)a′(x′,xn)=(a1(x′)η1(xn), (a2(x′)η1(xn), …,an-1(x′)η1(xn))∶=a″(x′)η1(xn)和b′(x′,xn)=(b1(x′)η2(xn), (b2(x′)η2(xn), …,bn-1(x′)η2(xn))∶=b″(x′)η2(xn),其中ηi∈L2(且滿足對幾乎所有的,都有,這里的表示ηi相對于xn的奇延拓,即

定理1.1若n≥3,a,b∈Lr((滿足假設(A1)~(A3),且r和m滿足(i)或(ii):

則存在T>1及常數C>0,使得當t≥T時,方程(2)的任意弱解(u,B)都有

(5)

定理1.1為本文主要結論.

2Stoke方程及熱方程解的衰減

(6)

其中:q需滿足1

(7)

其中:C=C(n, m, α, γ, δ)>0.

定理2.1[9]若n≥3,a滿足假設(A1)~(A3),則當t≥1時,有

(8)

其中:C=C(n, m, α, γ, δ)>0.

定理2.2若n≥3,b滿足假設(A1)~(A3),則當t≥1時,有

(9)

其中:C=C(n, m, α, γ, δ)>0.

證明:因為bn≡0,所以有hn(t)≡0和h′(t)=eΔtb′.因此,由Plancherel定理和Fubini定理,有

(10)

對于I1,由引理2.1可知,存在C=C(n-1, m, α, γ, δ)>0,使得當t≥1時,有

(11)

(12)

3MHD方程解的衰減

本節研究MHD方程解的衰減性質并給出定理1.1的證明.為了估計非線性項,首先給出以下引理.

(13)

引理3.2設1≤r<2 ,a,b∈Lr(對于方程(2)的任意弱解(u, B),當t→∞時,有

(14)

證明:設λ=λ(t)為(0, ∞)上的光滑函數,則

(15)

同理可得

(16)

(17)

(18)

由引理3.1,有

‖Eλ(t)u(t)‖2≤‖e-t Aa‖2+

(19)

‖Eλ(t)u(t)‖2≤

(20)

y(t)-g(t, s)+z(s)≤y(s)

(21)

z′(τ)=-λ(τ)y(τ)≤

-λ(τ)[y(t)-g(t, τ )+z(τ)]

(22)

設Z(τ)≥0為方程Z′(τ)=λ(τ)Z(τ)的解,將式(22)乘上Z(τ),并對τ作(s, t)上的積分

(23)

對式(23)作分部積分,因為z(t)=0, g(t, t)=0,所以

(24)

取λ(τ)=m τ-1, m>0,則Z(τ)=τm.令s→0,得

(25)

(26)

(27)

下面將分情況進行討論.

因此,有

引理3.3若1≤r<2, a, b∈Lr(假設v(t)=e-t Aa和h(t)=eΔ tb,則對于方程(2)的任意弱解(u,B),當t→∞時,有

‖u(t)-v(t)‖2+‖B(t)-h(t)‖2=

(28)

證明:設P(t)∶=u(t)-v(t),Q(t)∶=B(t)-h(t), (u,B)滿足能量不等式(4),v和h滿足能量不等式

因此有

(29)

在式(3)中取試驗函數φ(τ)=v(τ)和ψ(τ)=h(τ).此外,因為dv/dt=-Av,dh/dt=Δh,所以可得

(u(t), v(t))=

(30)

(B(t), h(t))=

(31)

將式(30)和(31)代入式(29),有

(32)

(33)

‖‖ ‖b‖‖u(τ)‖

(34)

(35)

同理,由命題2.1,有

(36)

(37)

設λ=λ(t)為(0, ∞)上的光滑函數,類似引理3.2中式(15)的證明,有

(38)

同理可知

(39)

e-(t -τ)AEλ(t)φ)|dτ≤

(40)

同理有

(41)

類似引理3.2中的證明,可得

(42)

取λ(t)=m t-1,其中m>0足夠大,有

(43)

此時注意到,若1≤r<2, (u, B)滿足

下面將分情況進行討論.

綜上所述,引理3.3得證.

定理1.1的證明.

所以,存在T≥1,使得

再由三角不等式以及定理2.1和2.2,有

‖u(t)‖2+‖B(t)‖2≥

‖v(t)‖2-‖u(t)-v(t)‖2+

‖h(t)‖2-‖B(t)-h(t)‖2≥

綜上所述,定理1.1得證.

參考文獻

[1] DUVAUT G, LIONS J L.Inéquations en thermoélasticité et magnétohydrodynamique [J]. Arch Ration Mech Anal,1972,46(4):241-279.

[2] ZHAO C, HE Y.GlobalLnstrong solutions to magneto-hydrodynamics equations in the Rnspace [J].Dyn Contin Discrete Impuls Syst Ser A Math Anal,2007,14(6):805-835.

[3] LI Y, ZHAO C.Existence, uniqueness and decay properties of strong solutions to an evo-lutionary system of MHD type in R3[J].J Dyn Diff Eq,2006,18(2):393-462.

[4] KATO T. StrongLpsolutions of the Navier-Stokes equations in Rmwith applications to weak solutions [J]. Math Z, 1984, 187(41): 471-480.

[5] SERMANGE M, TEMAM R.Some mathematical questions related to the MHD equations [J].Comm Pure Appl Math,1983,36(5):635-664.

[6] AGAPITO R, SCHONBEK M. Non-uniform decay of MHD equations with and without magnetic diffusion [J].Comm Part Diff Eq,2007,32(11):1791-1812.

[7] GUO B, ZHANG L.Decay of solutions to magneto- hydrodynamics equations in two space dimensions [J].Pro R Soc Lond Ser A Math Phys Eng Sci,1995,449(1935):79-91.

[8] 劉穎,李佳.半空間 MHD 方程組弱解的L2衰減 [J].數學物理學報,2010,30A(4): 1166-1175.

[10] SCHONBEK M E, SCHONBEK T P,SüLI E.Large-time behaviour of solutions to the magnetohydrodynamics equations [J]. Math Ann,1996,304(1):717-756.

[12] BORCHERS W, MIYAKAWA T.L2decay for the Navier-Stokes flow in half-spaces [J]. Math Ann,1988, 282(1):139-155.

《東華大學學報(自然科學版)》征稿簡則

《東華大學學報(自然科學版)》是由國家教育部主管、東華大學主辦的以紡織、服裝、纖維材料科學及相關學科為特色的學術性期刊(雙月刊).從2008年起本刊欄目設有纖維與材料工程、紡織與服裝工程、化學化工與生物工程、計算機與信息工程、機械與制造工程、環境科學與工程、經濟與管理工程、基礎科學,主要刊登本校師生的科學研究成果,適量刊登校外作者的優秀科技論文.本刊以高校師生、科研人員、工程技術人員及其他相關人員為讀者對象.為保證刊物質量,根據國家標準和本刊的編排規則,特制定本簡則.

1. 來稿要求

(1) 來稿要求論點明確、數據可靠、邏輯嚴密、文字精煉.來稿必須包括題名、作者姓名、單位及郵編、中英文摘要和關鍵詞(3~8個)、中國圖書資料分類號、第一作者簡介(包括姓名,出生年,性別,籍貫,職稱,學位,目前主要從事的研究方向及E-mail地址)、正文、參考文獻.在文稿的首頁地腳處注明論文屬何基金項目資助及項目編號.

(2) 論文摘要盡量寫成報道性摘要,其內容獨立于正文而存在,摘要內容應包括研究的目的、方法、結果、結論等要素,其長度一般在200字左右.中英文摘要一律采用第三人稱表述,不要使用“本文”、“作者”等作為主語.

(3) 論文篇幅(含圖表)限7000字以內,科研簡報限3000字.正文(含圖表)中的量和單位的使用必須符合國家法定計量單位最新標準.文稿中外文字符的大小寫、正斜體、黑白體、上下角標及易混淆的字母應打印清楚.

(4) 正文中標題:一級標題1, 2, …;二級標題1.1, 1.2, …;三級標題1.1.1, 1.1.2, …;引言不排序.

(5) 文中的圖、表應有自明性,且隨文出現.圖、表應有中、英文名.插圖須注意規范.如為坐標圖,需用符號注明所表示的量(斜體)/單位(正體);如為照片,須黑白分明、層次清晰.

(6) 參考文獻應只列出作者查閱過的、最主要的且在正式刊物上發表過的文獻.在正文中引用時用[1], [2], …順序標注;在文末“參考文獻”中,相應用[1], [2], …順序標注,序號頂格寫.

文后參考文獻編排格式:

① 期刊:[序號]作者(姓前名后).題名[J].刊名(外文刊名可縮寫),出版年,卷(期):起止頁碼.

② 專著:[序號]作者(姓前名后).書名[M].版本(第1版不寫).出版地:出版者,出版年:起止頁碼.

③ 會議論文集:[序號]作者(姓前名后).題名[C]//編者.論文集名.出版地:出版者,出版年:起止頁碼.

④ 科技報告:[序號]作者(姓前名后).題名[R].報告題名,編號.出版地: 出版者,出版年:起止頁碼.

⑤ 學位論文:[序號]作者(姓前名后).題名[D].保存地點:保存單位,授予年份:頁碼.

⑥ 國際、國家標準:[序號] 主要責任者.標準編號,標準名稱[S].出版地:出版者,出版年.

⑦ 專利文獻:[序號] 專利申請者或所有者(姓前名后).專利題名:專利國別,專利號[P].出版日期.

⑧ 電子文獻:[序號] 作者(姓前名后).題名[電子文獻類型/標識](類型:數據庫用DB,計算機程序用CP,電子公告用EB;標識:磁帶用MT,磁盤用DK,光盤用CD,聯機網絡用OL).(發表或更新日期)[引用日期].電子文獻的出處或可獲得地址.建議在網址和相應的文獻間建立起超鏈接.

文獻作者3名以內全部列出,4名及以上只列前3名,后加“,等”或“,et al”.

2. 編輯部與作者的約定

(1) 本刊可接受網上在線投稿,在本刊的自動化采編系統完成投稿,凡初審符合要求的稿件,校內稿件每篇收取200元審稿費(東華大學校內經費卡轉賬),校外稿件每篇收取300元審稿費(將錢款郵匯到本刊編輯部).請勿一稿兩投或多投.稿件經專家兩審和編委復審通過同意發表,方可錄用,對刊用稿件收取一定的發表費.凡不宜在本刊發表的稿件,編輯部將及時退還作者.如作者投稿4個月內未收到本刊編輯部任何通知,可自行處理稿件.

(2) 為了適應我國信息化建設,擴大本刊及作者知識信息交流渠道,本刊已被國內外文獻索引、文摘和全文數據庫收錄,作者著作權使用費與本刊稿酬一次性給付.如作者不同意文章被收錄,請在來稿時向本刊說明,本刊將做適當處理.

編輯部地址:上海市延安西路1882號東華大學學報(自然科學版)編輯部(200051);電話:021-62373643, 62373724,傳真:021-62373611;E-mail:dhutougao@126.com;網址: http://dhdz.cbpt.cnki.net

Lower Bound of the Energy Decay of the Weak Solution of the MHD Equations in the Half-Space

LüKai

(College of Science, Donghua University, Shanghai 201620, China)

Abstract:An asymptotic behavior of weak solution of the magneto-hydrodynamic(MHD) equations in the half-space + is studied. By constructing a class of initial data which cause slow decay, lower bound of the energy decay of the MHD equations is obtained.

Key words:magneto-hydrodynamic(MHD) equations; half-space; lower bound of the energy decay

中圖分類號:O 175.14

文獻標志碼:A

作者簡介:呂鍇(1988—),男,江西南昌人,碩士研究生,研究方向為磁流體力學方程.E-mail:faustxxiv@gmail.com

收稿日期:2014-10-23

文章編號:1671-0444(2016)01-0160-07

主站蜘蛛池模板: 久久精品免费看一| 国产精品19p| 婷婷伊人久久| 91香蕉国产亚洲一二三区 | 91精品啪在线观看国产60岁| 四虎在线高清无码| 国产精品视频白浆免费视频| 欧美综合中文字幕久久| 日本一区高清| 男女猛烈无遮挡午夜视频| 欧美日韩国产高清一区二区三区| 欲色天天综合网| 午夜激情福利视频| 亚洲中文字幕久久精品无码一区| 亚洲国产精品无码AV| 免费A∨中文乱码专区| 亚洲区欧美区| 波多野结衣爽到高潮漏水大喷| 天堂av综合网| 91在线播放国产| 国产又爽又黄无遮挡免费观看| 91精品国产福利| 亚洲综合香蕉| 欧美激情视频一区| 国产美女自慰在线观看| 99re热精品视频国产免费| 欧美成人亚洲综合精品欧美激情| 国产精品美女在线| 亚洲欧美另类久久久精品播放的| 99尹人香蕉国产免费天天拍| 激情综合五月网| 久久亚洲天堂| 国产精品亚洲专区一区| 久久精品人人做人人综合试看| 中日韩一区二区三区中文免费视频 | 欧美日韩免费| 午夜视频免费一区二区在线看| 波多野结衣一级毛片| 久久精品中文字幕少妇| 99在线观看国产| AV老司机AV天堂| 伊人久久综在合线亚洲2019| 欧洲熟妇精品视频| 国产伦片中文免费观看| 国产日韩精品欧美一区喷| 九九热精品视频在线| 一级成人欧美一区在线观看| 天堂亚洲网| 亚洲国产精品无码久久一线| 午夜视频在线观看免费网站 | 国产精品永久在线| 一本色道久久88| 99成人在线观看| 久久精品欧美一区二区| 国产原创演绎剧情有字幕的| YW尤物AV无码国产在线观看| 国产成人综合在线观看| 国产精品国产三级国产专业不| 久久精品国产999大香线焦| 国产无码在线调教| 亚洲精品无码不卡在线播放| 专干老肥熟女视频网站| 强奷白丝美女在线观看| 国产乱论视频| 亚洲国产日韩视频观看| 最新亚洲人成网站在线观看| 日韩精品成人在线| 国产欧美日韩va另类在线播放| 在线va视频| 久久五月天国产自| 欧美精品三级在线| 国产99视频精品免费视频7| 亚洲精品在线影院| 欧美区一区| 亚洲有码在线播放| 91麻豆国产视频| 欧美一区福利| 在线免费亚洲无码视频| 91欧美在线| 99无码熟妇丰满人妻啪啪 | 国产成人免费观看在线视频| 日韩福利视频导航|