999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

腫瘤干細胞的分子機制和調控通路

2016-02-16 01:01:24涂艷陽張永生第四軍醫大學唐都醫院實驗外科唐都醫院唐都醫院腦外科陜西西安7008
轉化醫學電子雜志 2016年11期
關鍵詞:信號

涂艷陽,王 震,張永生,王 樑(第四軍醫大學:唐都醫院實驗外科,唐都醫院,唐都醫院腦外科,陜西西安7008)

腫瘤干細胞的分子機制和調控通路

涂艷陽1,王 震1,張永生2,王 樑3(第四軍醫大學:1唐都醫院實驗外科,2唐都醫院,3唐都醫院腦外科,陜西西安710038)

惡性腫瘤是人類健康和生命最嚴重的威脅之一,腫瘤治療仍然是今天人類面臨的一個大問題.傳統的腫瘤治療方法包括手術、化療、放療等方法,但是很多腫瘤仍然會復發,無法做到根治,最根本的原因是腫瘤轉移和復發的機制不清楚.近年來,腫瘤細胞表面標記、腫瘤細胞增殖和腫瘤發生能力的研究讓人們提出腫瘤干細胞(CSC)的理論.腫瘤干細胞屬于腫瘤細胞中一類具有無限自我更新能力和異質免疫缺陷動物致瘤能力的干細胞.腫瘤干細胞在腫瘤的發生、發展和轉移過程中扮演重要角色.腫瘤干細胞理論的提出為腫瘤治療提供了新思路.本文中,我們將總結腫瘤干細胞理論形成和發展的過程,討論腫瘤干細胞的生成,表面標志物,自我更新和調控途徑.這些腫瘤干細胞的理論機制可能為未來惡性腫瘤靶向治療提供幫助.

惡性腫瘤;干細胞;調控通路;靶向治療

0 引言

惡性腫瘤是當今人類面臨的主要威脅之一.傳統的消除腫瘤細胞治療腫瘤的方法包括手術、化療、放療等.但惡性腫瘤的復發和轉移是腫瘤難治愈的主要原因之一,并且惡性腫瘤患者死亡率高,使得腫瘤治療成為人們面臨的最大挑戰之一.盡管腫瘤相關的生物學理論研究越來越深,生物學技術越來越進步,但至今腫瘤發生發展、復發和轉移的根本原因還不清楚.因為腫瘤細胞就像干細胞一樣具有自我更新和分化的能力,這導致研究人員提出了腫瘤干細胞理論.腫瘤干細胞理論認為一部分腫瘤細胞具有干細胞的特性,具有自我更新和分化的能力,這是腫瘤干細胞的存在是腫瘤復發和轉移的主要原因.

腫瘤干細胞樣的細胞也稱為腫瘤起源細胞,是腫瘤細胞中一類像正常干細胞一樣具有自我更新能力并能夠誘導腫瘤發生的細胞[1].腫瘤干細胞最先在白血病中被發現.人們將急性髓細胞性白血病細胞(acute myelogenous leukemia,AML)移植到嚴格聯合免疫缺陷(severe cembined immunodeficient,SCID)老鼠身上.AML細胞根據細胞表面標志物分選得到,注射到SCID小鼠體內的白血病起始細胞能夠產生大量克隆狀的CD34+CD38-祖細胞,這種體內模型很類似于AML祖細胞,并且定義了一種新的相比克隆形成細胞不太成熟的白血病起始細胞[2].從此之后,腫瘤干細胞在多種實體腫瘤中被發現,如乳腺癌[3]、腦腫瘤[4]、結腸癌[5]、肺癌[6]和其他腫瘤組織[7].很多研究也報道了腦腫瘤干細胞的發現和鑒定過程[5,8-11].腫瘤干細胞被認為是腫瘤化療和放療抵抗的主要原因,并且缺氧條件下可以誘導腫瘤血管生成和腫瘤發生[12-15].因此,在多種腫瘤中,腫瘤干細胞被視為潛在治療靶點,但腫瘤干細胞干性維持的關鍵分子機制至今仍未明確.目前的研究成果表明腫瘤干細胞收到一些信號通路的調控,其他的調控方式還有microRNA,腫瘤微環境和許多其他多種因素.

1 腫瘤干細胞分子標志物

幾乎所有類型的腫瘤干細胞都有自己的特定的表面標志物.根據特定的腫瘤干細胞的表面標志物可以對特定類型的腫瘤進行精準治療.很長一段時間,許多研究人員都致力于尋找腫瘤干細胞的表面標志物.腫瘤干細胞表面標志物的研究最開始是在血液瘤中進行的.Lapido等人首次報道了CD34+CD38-表型的急性髓系白血病(AML)細胞[2].分離得到的CD34+CD38-表型的細胞可以在小鼠體內誘發類似于人類的白血病的,但是CD34CD38+表型的細胞就沒有這種致腫瘤能力.另外CD96+也是急性髓系白血病AML干細胞的特異性標記,因為在CD96+細胞內發現了人類CD45+細胞,而CD96-細胞內則沒有[16].其他的干細胞標志物還包括,CD133+和nestin被證實是腦腫瘤干細胞特異性標記[17],而CD44+被驗證為胃癌干細胞標記.CD44、CD133 CD166和EpCAM被證實是結腸癌腫瘤干細胞表面標志物[18].報告Lin-ESZ+CD44+CD24-/low和ALDH1+是乳腺癌干細胞表面標記[19].周等認為CD133+喉腫瘤干細胞的標志之一,而最新研究表明ALDH1也是特定的頭部和頸部腫瘤干細胞的標志物[20-21].ABCG2、ALDH1、MCM2、SCA-1和p63已經被證實是視網膜母細胞瘤細胞的干細胞表面標記物[22-23].Levina等用化療藥物處理后,發現高表達CD133、CD117和OCT4的肺癌細胞能存活下來,這些分子被認為是肺癌干細胞標志物[24].此外,CD44、CD24、ESA和CD133+可以用于標記胰腺癌干細胞[25-26].CD44+/CD133+/α-2β1hi是前列腺癌干細胞表面標記,CD133、CD90用于標記肝癌干細胞[27-28].其他腫瘤干細胞標志物如表1所示.

表1 不同類型腫瘤及其干細胞標志物列表

2 腫瘤干細胞的調控機制

目前為止,腫瘤干細胞的分子調控機制尚不完全清楚.如今關于腫瘤干細胞調控機制的研究主要集中在信號通路調控、轉錄因子表達異常、腫瘤微環境和microRNA和其他表觀遺傳調控方面.

2.1 信號通路調節異常

2.1.1 Wnt通路 Wnt信號通路負責調控脊椎動物和無脊椎動物的胚胎發育,視網膜干細胞、腸道、乳腺

癌、胚胎干細胞和其他各種干細胞的自我更新都非常重要[29-33].Wnt/β-catenin信號通路對正常干細胞的增殖和分化也非常重要[34-35].近年來在結腸直腸癌、肝癌、胰腺癌、子宮內膜癌、卵巢癌、甲狀腺癌、前列腺癌、腎腫瘤和一些其他類型的腫瘤中均發現wnt信號通路是突變或激活的狀態,表明wnt信號通路在腫瘤發生過程中起到調控的作用.同時一些研究也證實了wnt通路中的分子在腫瘤干細胞中的重要作用.例如wnt-1和β-catenin老鼠4T1乳腺癌細胞系和NXS2神經母細胞瘤細胞系中高表達[36-37].wnt信號的過度激活導致干細胞過度增殖,進而轉化成腫瘤干細胞.但wnt信號在分化細胞中沒有功能.原因可能是高表達分化細胞中含有wnt信號抑制分子,抑制wnt信號通路分子的活性,導致下游分子β-catenin不能激活[38].這些研究表明wnt信號通路中腫瘤干細胞的發生和命運都至關重要.

2.1.2 Notch通路 Notch信號通路主要調控正常干細胞的增殖、分化、細胞凋亡和細胞間通訊.Notch信號通路在果蠅的遺傳研究中首次被發現,因為一些Notch的等位基因的誘導產生切口翅膀而得名(notched wings).Notch信號通路對脊椎動物和無脊椎動物的細胞增殖、細胞凋亡、神經系統發育和器官的形成都非常重要.此外,Notch通路在腫瘤發生過程中也很關鍵.一些Notch信號通路分子在正常干細胞中高表達[39-40],說明Notch信號通路與干細胞的自我更新密切相關.研究表明,Notch信號通路的激活會促進促進神經干細胞、腦垂體干細胞和乳腺癌干細胞的增殖[39-41],同時能促進乳腺癌微球的形成[42].然而也有研究表明Notch信號可以防止干細胞的過度增殖導致的干細胞惡性增加[43-44].研究表明,的MCF-7乳腺癌細胞系中notch1高表達.然而過表達Notch2細胞內結構域(NICD2)會導致測亞群增加.抑制Notch信號能增加腫瘤干細胞的凋亡率,但分化細胞不受影響.動物實驗表明,抑制Notch信號能降低細胞的致瘤能力[45].Notch信號能夠促進一些惡性腫瘤的轉移,另一方面Notch信號在其他腫瘤組織又能抑制其轉移[46-48],說明Notch信號通路對腫瘤干細胞的調控具有組織特異性,其分子機制需要進一步研究.

2.1.3 Hedgehog通路 Hedgehog基因編碼的分泌蛋白Hh主要調控細胞增殖、分化和形態學自分泌或旁分泌的方式.已知的Hedgehog通路分子包括Desert、Indian和Sonic.Sonic Hedgehog信號分子Gli能夠通過Bmi1抑制p14和p16,進而保護cyclinD/CDK4并抑制p53.Hedgehog信號在乳腺癌、胰腺癌、前列腺癌等腫瘤組織中異常表達[49].Hedgehog信號是一個比較經典的干細胞調控途徑,Hedgehog信號通路參與果蠅卵巢干細胞、原始造血干細胞、腸道祖細胞和乳腺干細胞等干細胞的調控.此外,Hedgehog信號對各種干細胞的自我更新也非常重要.Shh受體的激活能夠促進人類表皮干細胞的增殖,而Shh抑制劑能夠抑制干細胞增殖[50].在神經系統中,敲除Shh能夠引起神經微球損傷[51],而組成性激活Shh和c-myc能夠促進神經祖細胞的增殖,進而導致成神經管細胞瘤的形成[52].因此,Hedgehog信號通路對腫瘤干細胞的調控十分重要.

2.2 轉錄因子表達異常轉錄因子的異常表達對腫瘤干細胞增殖和自我更新至關重要,許多轉錄因子與腫瘤干細胞的形成和維持密切相關.轉錄因子SOX2、c-myc、Klf4、Oct4和Lin28的表達水平都被證明與腫瘤干細胞的自我更新和多向分化能力相關.研究發現這些轉錄因子在許多人類腫瘤組織中高表達,其表達水平與腫瘤的發展及預后密切相關[53].肺癌干細胞的自我更新和上皮間充質轉變(EMT)被證明與Oct4和Nanog的異常表達有關[54].轉錄因子Twist和Zeb也參與乳腺癌上皮間充質轉變(EMT)過程,導致腫瘤細胞具有干細胞的特性[55].轉錄因子對腫瘤干細胞的調控不是獨立的,而是多種轉錄因子的異常表達共同調控相關腫瘤干細胞的維持.

2.3 MicroRNAmicroRNA通常在轉錄后水平上調節基因的表達.microRNA對細胞的增殖、分化、發育、衰老和凋亡都非常重要,而且microRNA在腫瘤形成、生長、分化和發展過程中都扮演重要的調控角色[56-58].同一種MicroRNA可以調控多個基因,同時多種microRNA也可以共同調控同一種基因,microRNA通過排列和組合可以對基因表達實現精確調控[59-60].研究表明,EMT相關的轉錄因子像Twist1、Snail1、Zeb1、microRNA和Zeb2都可以被microRNA調控,所以microRNA是EMT過程的重要參與因素[61].例如,microRNA中的mir-200家族[62-65]像mir-200a/b/c、mir-141和mir-200家族的其他成員通過抑制Zeb1的表達調控EMT過程,這種調控使得細胞維持上皮樣表型并減少EMT的發生[63].其他很多microRNA也參與調控EMT,例如過表達miR-29b可以逆轉EMT過程,抑制細胞侵入性表型的出現[66].MiR-30可以調控Snail1的表達水平抑制TGF-β的表達進而誘導EMT的發生[67].mir-661和mir-491-5p則通過減弱細胞連接抑制EMT的發生[68-69].因此microRNA對于腫瘤中的EMT過程至關重要.

在干細胞方面,microRNA很早就被已經被證實參與調控胚胎干細胞、成體干細胞和腫瘤干細胞.microRNA對正常胚胎干細胞自我更新和細胞分化能力有很重要的調控作用[70].mir-290簇可以調控干細胞的細胞周期,包括mir-291-3p、mir-294和mir-295能增強KLF4、OCT4、SOX2的表達并誘導細胞多能效率[71].研究表明mir-145在自我更新的胚胎干細胞中低表達,而在分化細胞中高表達.mir-145與它的靶基因包括OCT4、SOX2和KLF4共同抑制人類胚胎干細胞并誘導分化[72].研究還表明,過表達let-7抑制小鼠體內腫瘤的形成和轉移[73].這些發現表明,microRNA對干腫瘤干細胞的維持和細胞分化的調控至關重要,研究microRNA腫瘤干細胞理論的完善很有意義.

2.4 表觀遺傳調控MicroRNA屬于表觀遺傳調控的方式之一,除此之外,表觀遺傳的調控的分子機制還包括DNA甲基化與去甲基化、組蛋白修飾和染色質重塑[74-76].腫瘤干細胞可能起源于正常干細胞/祖細胞,也可能來自分化細胞的重編程.表觀遺傳學在體細胞重編程過程中扮演重要角色,預示著其在干細胞形成發展中的重要地位[77-79].腫瘤干細胞中常常出現信號轉導通路異常和轉錄因子的表達異常引起的表觀遺傳變化,這些表觀遺傳變化進而導致一系列的基因變化.Pellacani發現CD133陽性的前列腺癌腫瘤干細胞受到濃縮染色質的動態調控[80].DNA甲基化劑5-Aza-Dc和組蛋白乙?;种苿㏒AHA可以通過miR-34抑制胰腺癌干細胞的Notch信號通路,降低胰腺癌腫瘤細胞的自我更新和增殖能力,降低EMT和侵襲能力[81].表觀遺傳學的機制和方法已被應用于腫瘤的預防、診斷和治療中.甲基化特異性PCR被應用于患者的體液和活細胞甲基化表達的檢測,將成為腫瘤診斷的有力工具.如果能進一步明確腫瘤干細胞表觀遺傳學的調控機制及其在腫瘤發生及發展中的作用,將為未來的腫瘤治療提供有益參考.

2.5 腫瘤干細胞微環境腫瘤干細胞微環境對腫瘤發生、侵襲及轉移過程都有很重要的意義.腫瘤干細胞微環境主要包括細胞因子、間充質細胞、免疫細胞、血管和細胞外基質等.不同的腫瘤干細胞微環境特征主要包括缺氧、鄰血管、炎癥反應和上皮間充質轉變等.這些微環境之間相互關聯,共同調控相關的腫瘤干細胞[82].

腫瘤干細胞微環境的特征之一就是缺氧狀態.研究表明,腫瘤干細胞的適應性反應是受低氧誘導因子(HIF)的調控,Oct4、c-myc和Notch都是低氧誘導因子(HIF)的直接或間接的靶標.此外,低氧誘導因子還調節腫瘤干細胞表型的形成過程[83].調節干細胞的氧化應激微環境被證明對慢性粒細胞性白血病具有一定的治療效果[84].鄰血管在位置和功能上都與腫瘤干細胞密切相關[53].鄰血管微環境的很多特征都可以調控腫瘤干細胞并產生抗腫瘤功能,例如抑制腫瘤血管生成,破壞腫瘤血管,抑制一氧化氮分子作用和改變腫瘤干細胞鄰近血管微環境等[53],這些因素表明鄰近血管微環境是腫瘤干細胞的重要調控方式[85].炎性反應腫瘤干細胞微環境包括各種各樣的間充質細胞和免疫細胞分泌的炎癥因子的,如IL-6、IL-8、TNF-α、和MFG等.這些炎癥因子可以通過激活NFκB、Stat3、Hedgehog和Notch信號通路的方式調控腫瘤干細胞[86-87].這些炎癥因子可以作為調節腫瘤干細胞微環境靶標,最終達到治療腫瘤的目的.

3 展望

腫瘤干細胞理論為惡性腫瘤的治療提供了新的思路.腫瘤干細胞與分化的腫瘤細胞最大的不同在于腫瘤干細胞通常具有放療和化療抵抗性.這意味著雖然放療和化療可以殺死大多數腫瘤細胞,但是關鍵致瘤性的腫瘤干細胞依然能夠存活下來.這部分細胞是腫瘤復發和轉移的根源,所以明確腫瘤干細胞的發生機制和調控途徑對腫瘤治療具有非常重要的意義.本文論述了腫瘤干細胞的生成機制,總結了腫瘤干細胞的表面標志物和腫瘤干細胞的主要調控途徑.然而,目前關于腫瘤干細胞的研究仍處于起步階段,仍有許多問題有待解決.例如,只有部分特定腫瘤干細胞的標記物被發現并驗證,仍有更多的腫瘤干細胞特異性標志物有待發現.腫瘤干細胞的放療和化療抵抗性的具體分子機制需要進一步的研究.腫瘤干細胞各種信號轉導途徑和調控通路的核心機理尚不清楚.即使關于腫瘤干細胞仍有如此多的問題等待解決,我們相信隨著腫瘤干細胞發生機制和調控通路研究的不斷深入,腫瘤干細胞理論在惡性腫瘤靶向治療中的一定會發揮更加重要的作用.

[1]Yoon CH,Kim MJ,Kim RK,et al.c-Jun N-terminal kinase has a pivotal role in the maintenance of self-renewal and tumorigenicity in glioma stem-like cells[J].Oncogene,2012,31(44):4655-4666.

[2]Lapidot T,Sirard C,Vormoor J,et al.A cell initiating human acute myeloid leukaemia after transplantation into SCID mice[J].Nature,1994,367(6464):645-648.

[3]Al-Hajj M,Wicha MS,Benito-Hernandez A,et al.Prospective identification of tumorigenic breast cancer cells[J].Proc Natl Acad Sci USA,2003,100(7):3983-3988.

[4]Singh SK,Hawkins C,Clarke ID,et al.Identification of human brain tumour initiating cells[J].Nature,2004,432(7015):396-401.

[5]Ricci-Vitiani L,Lombardi DG,Pilozzi E,et al.Identification and expansion of human colon-cancer-initiating cells[J].Nature,2007,445(7123):111-115.

[6]Eramo A,Lotti F,Sette G,et al.Identification and expansion of the tumorigenic lung cancer stem cell population[J].Cell Death Differ,2008,15(3):504-514.

[7]Visvader JE,Lindeman GJ.Cancer stem cells in solid tumours:accumulating evidence and unresolved questions[J].Nat Rev Cancer,2008,8(10):755-768.

[8]Galli R,Binda E,Orfanelli U,et al.Isolation and characterization of tumorigenic,stem-like neural precursors from human glioblastoma[J].Cancer Res,2004,64(19):7011-7021.

[9]Houman D,Hemmati IN,Jorge A,et al.Cancerous stem cells can arise from pediatric brain tumors[J].PNAS,2003,100(25):5.

[10]Salmaggi A,Boiardi A,Gelati M,et al.Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype[J].Glia,2006,54(8):850-860.

[11]Yi L,Zhou ZH,Ping YF,et al.Isolation and characterization of stem cell-like precursor cells from primary human anaplastic oligoastrocytoma[J].Mod Pathol,2007,20(10):1061-1068.

[12]Murat A,Migliavacca E,Gorlia T,et al.Stem Cell-Related“Self-Renewal”Signature and High Epidermal Growth Factor Receptor Expression Associated With Resistance to Concomitant Chemoradiotherapy in Glioblastoma[J].J Clin Oncol,2008,26(18):3015-3024.

[13]Bao S,Wu Q,Mclendon RE,et al.Glioma stem cells promote radioresistance by preferential activation of the DNA damage response[J].Nature,2006,444:756-760.

[14]Li Z,Bao S,Wu Q,et al.Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells[J].Cancer Cell,2009,15(6):501-513.

[15]Bao S,Wu Q,Sathornsumetee S,et al.Stem Cell-like Glioma Cells Promote Tumor Angiogenesis through Vascular Endothelial Growth Factor[J].Cancer Res,2006,66:7843-7848.

[16]Hosen N,Weissman IL,et al.CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia[J].Proc Natl Acad Sci USA,2007,104(26):11008-11013.

[17]Jordan CT.Cancer stem cell biology:from leukemia to solid tumors[J].Curr Opin Cell Biol,2004,16(6):708-712.

[18]Dalerba P,Dylla SJ,Park IK,et al.Phenotypic characterization of human colorectal cancer stem cells[J].Proc Natl Acad Sci USA,2007,104(24):10158-10163.

[19]Himuro T,Horimoto Y,Arakawa A,et al.Activated Caspase 3 Expression in Remnant Disease After Neoadjuvant Chemotherapy May Predict Outcomes of Breast Cancer Patients[J].Ann Surg Oncol,2016,23(7):2235-2241.

[20]Ginestier C,Min HH,Charafe-Jauffret E,et al.ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome[J].Cell Stem Cell,2007,1(5):555-567.

[21]Zhou L,Wei X,Cheng L,et al.CD133,one of the markers of cancer stem cells in Hep-2 cell line[J].Laryngoscope,2007,117(3):455-460.

[22]Fang D,Nguyen TK,Leishear K,et al.A tumorigenic subpopulation with stem cell properties in melanomas[J].Cancer Res,2005,65(20):9328-9337.

[23]Seigel GM,Campbell LM,Narayan M,et al.Cancer stem cell characteristics in retinoblastoma[J].Mol Vis,2005,11:729-737.

[24]Levina V,Marrangoni AM,Demarco R,et al.Drug-selected human lung cancer stem cells:cytokine network,tumorigenic and metastatic properties[J].PLoS One,2008,3(8):e3077.

[25]Heidt DG,Li C,Mollenberg N,et al.Identification of pancreatic cancer stem cells[J].Cancer Res,2007,67(3):1030-1037.

[26]Hermann PC,Huber SL,Herrler T,et al.Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer[J].Cell Stem Cell,2007,1(3):313-323.

[27]Nagaki A,Tsukada M,Osawa Y,et al.CD133 as a putative marker of cancer stem/progenitor cells in hepatocellular carcinoma[J].J Gastroen Hepatol,2007(22):A192.

[28]Ma S,Chan KW,Hu L,et al.Identification and characterization of tumorigenic liver cancer stem/progenitor cells[J].Gastroenterology,2007,132(7):57-60.

[29]He B,Barg RN,You L,et al.Wnt signaling in stem cells and nonsmall-cell lung cancer[J].Clin Lung Cancer,2005,7(1):54-60.

[30]Schepers A,Clevers H.Wnt signaling,stem cells,and cancer of the gastrointestinal tract[J].Cold Spring Harb Perspect Biol,2012,4(4):a007989.

[31]He B,Jablons DM.Wnt signaling in stem cells and lung cancer[J].Ernst Schering Found Symp Proc,2006(5):27-58.

[32]Bisson I,Prowse DM.WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics[J].Cell Res,2009,19(6):683-697.

[33]Basu S,Haase G,Ben-Ze'ev A.Wnt signaling in cancer stem cells and colon cancer metastasis[J].F1000 Res,2016:5.

[34]Nayak L,Bhattacharyya NP,De RK.Wnt signal transduction pathways:modules,development and evolution[J].BMC Syst Biol,2016,10(Suppl 2):44.

[35]Yang J,Fang Z,Wu J,et al.Construction and application of a lung cancer stem cell model:antitumor drug screening and molecular mechanism of the inhibitory effects of sanguinarine[J].Tumour Biol,2016:1-13.

[36]Patrawala L,Calhoun T,Schneiderbroussard R,et al.Side population is enriched in tumorigenic,stem-like cancer cells,whereas ABCG2+and ABCG2-cancer cells are similarly tumorigenic[J].Cancer Res,2005,65(14):6207-6219.

[37]Kruger JA,Kaplan CD,Luo Y,et al.Characterization of stem celllike cancer cells in immune-competent mice[J].Blood,2006,108(12):3906-3912.

[38]Yang Y,Cheng Z,Tang H,et al.Neonatal Maternal Separation Impairs Prefrontal Cortical Myelination and Cognitive Functions in Rats Through Activation of Wnt Signaling[J].Cereb Cortex,2016.

[39]Chen J,Crabbe A,Van DV,et al.The notch signaling system ispresent in the postnatal pituitary:marked expression and regulatory activity in the newly discovered side population[J].Mol Endocrinol,2006,20(12):3293-3307.

[40]Challen GA,Bertoncello I,Deane JA,et al.Kidney side population reveals multilineage potential and renal functional capacity but also cellular heterogeneity[J].J Am Soc Nephrol,2006,17(7):1896-1912.

[41]Androutsellis-Theotokis A,Hoeppner DJ,Rueger MA,et al.Notch signalling regulates stem cell numbers in vitro and in vivo[J].Nature,2006,442(7104):823-826.

[42]Dontu G,Jackson KW,Mcnicholas E,et al.Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells[J].Breast Cancer Res,2004,6(6):1-11.

[43]Wang XD,Leow CC,Zha J,et al.Notch signaling is required for normal prostatic epithelial cell proliferation and differentiation[J].Dev Biol,2006,290(1):66-80.

[44]Thelu J,Rossio P,Favier B.Notch signalling is linked to epidermal cell differentiation level in basal cell carcinoma,psoriasis and wound healing[J].BMC Dermatol,2002,2:7.

[45]Fan X,Matsui W,Khaki L,et al.Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors[J].Cancer Res,2006,66(15):7445-7452.

[46]Braune EB,Lendahl U.Notch-a goldilocks signaling pathway in disease and cancer therapy[J].Discov Med,2016,21(115):189-196.

[47]Allenspach EJ,Maillard I,Aster JC,et al.Notch signaling in cancer[J].Cancer Biol Ther,2006,6(8):905-918.

[48]Alketbi A,Attoub S.Notch Signaling in Cancer:Rationale and Strategies for Targeting[J].Curr Cancer Drug Targets,2015,15(5):364-374.

[49]Merchant AA,Matsui W.Targeting Hedgehog-a cancer stem cell pathway[J].Clini Cancer Res,2010,16(12):3130-3140.

[50]Zhou JX,Jia LW,Liu WM,et al.Role of sonic hedgehog in maintaining a pool of proliferating stem cells in the human fetal epidermis[J].Hum Reprod,2006,21(7):1698-1704.

[51]Palma V,Ruiz IAA.Hedgehog-GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex[J].Development,2004,131(2):2252-2259.

[52]Rao G,Pedone CA,Coffin CM,et al.c-myc enhances sonic hedgehog-induced medulloblastoma formation from nestin-expressing neural progenitors in mice[J].Neoplasia,2003,5(3):198-204.

[53]Li Y,Laterra J.Cancer stem cells:distinct entities or dynamically regulated phenotypes?[J].Cancer Res,2012,72(3):576-580.

[54]Chiou SH,Wang ML,Chou YT,et al.Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation[J].Cancer Res,2010,70(24):10433-10444.

[55]Mani SA,Guo W,Liao MJ,et al.The epithelial-mesenchymal transition generates cells with properties of stem cells[J].Cell,2008,133(4):704-715.

[56]De Sano JT,Xu L.MicroRNA regulation of cancer stem cells and therapeutic implications[J].AAPS J,2009,11(4):682-692.

[57]Rybicka A,Mucha J,Majchrzak K,et al.Analysis of microRNA expression in canine mammary cancer stem-like cells indicates epigenetic regulation of transforming growth factor-beta signaling[J].J Physiol Pharmacol,2015,66(1):29-37.

[58]Garzia L,Andolfo I,Cusanelli E,et al.MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma[J].PLoS One,2009,4(3):e4998.

[59]Subramanyam D,Blelloch R.From microRNAs to targets:pathway discovery in cell fate transitions[J].Curr Opin Genet Dev,2011,21(4):498-503.

[60]Liu C,Tang DG.MicroRNA regulation of cancer stem cells[J].Cancer Res,2011,71(18):5950-5954.

[61]Ma L,Weinberg RA.Micromanagers of malignancy:role of microRNAs in regulating metastasis[J].Trends Genet,2008,24(9):448-456.

[62]Burk U,Schubert J,Wellner U,et al.A reciprocal repression between ZEB1 and members of the mir-200 family promotes EMT and invasion in cancer cells[J].Embo Reports,2008,9(6):582-589.

[63]Gregory PA,Bert AG,Paterson EL,et al.The mir-200 family and mir-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1[J].Nat Cell Biol,2008,10(5):593-601.

[64]Korpal M,Lee ES,Hu G,et al.The mir-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2[J].J Biol Chem,2008,283(22):14910-14914.

[65]Park SM,Gaur AB,Lengyel E,et al.The mir-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2[J].Genes&Development,2008,22(7):894-907.

[66]Ru P,Steele R,Newhall P,et al.miRNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling[J].Mol Cancer Ther,2012,11(5):1166-1173.

[67]Zhang J,Zhang H,Liu J,et al.miR-30 inhibits TGF-beta1-induced epithelial-to-mesenchymal transition in hepatocyte by targeting Snail1[J].Biochem Biophys Res Commun,2012,417(3):1100-1105.

[68]Vetter G,Saumet A,Moes M,et al.mir-661 expression in SNAI1-induced epithelial to mesenchymal transition contributes to breast cancer cell invasion by targeting Nectin-1 and StarD10 messengers[J].Oncogene,2010,29(31):4436-4448.

[69]Zhou Q,Fan J,Ding X,et al.TGF-{beta}-induced MiR-491-5p expression promotes Par-3 degradation in rat proximal tubular epithelial cells[J].J Biol Chem,2010,285(51):40019-40027.

[70]Marson A,Levine SS,Cole MF,et al.Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells[J].Cell,2008,134(3):521-533.

[71]Judson RL,Babiarz JE,Venere M,et al.Embryonic stem cell-specific microRNAs promote induced pluripotency[J].Nat Biotechnol,2009,27(5):459-461.

[72]Xu N,Papagiannakopoulos T,Pan G,et al.MicroRNA-145 regulates OCT4,SOX2,and KLF4 and represses pluripotency in human embryonic stem cells[J].Cell,2009,137(4):647-658.

[73]Yu F,Yao H,Zhu P,et al.let-7 regulates self renewal and tumorigenicity of breast cancer cells[J].Cell,2007,131(6):1109-1123.

[74]Lim YY,Wright JA,Attema JL,et al.Epigenetic modulation of the mir-200 family is associated with transition to a breast cancer stemcell-like state[J].J Cell Sci,2013,126(10):2256-2266.

[75]van Vlerken LE,Hurt EM,Hollingsworth RE.The role of epigenetic regulation in stem cell and cancer biology[J].J Mol Med-Jmm,2012,90(7):791-801.

[76]Widschwendter M,Fiegl H,Egle D,et al.Epigenetic stem cell signature in cancer[J].Nature Genetics,2007,39(2):157-158.

[77]Patel S,Shah K,Mirza S,et al.Epigenetic regulators governing cancer stem cells and epithelial-mesenchymal transition in oral squamous cell carcinoma[J].Curr Stem Cell Res Ther,2015,10(2):140-152.

[78]Marquardt JU.Epigenetic Modulation selects unique cancer stem cell population within the Sp fraction of human hcc[J].Hepatology,2008,48(4):983a.

[79]Balch C,Nephew KP,Huang TH,et al.Epigenetic“bivalently marked”process of cancer stem cell-driven tumorigenesis[J].Bioessays,2007,29(9):842-845.

[80]Pellacani D,Packer RJ,Frame FM,et al.Regulation of the stem cell marker CD133 is independent of promoter hypermethylation in human epithelial differentiation and cancer[J].Mol Cancer,2011,10(7):1-14.

[81]Nalls D,Tang SN,Rodova M,et al.Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells[J].Plos One,2011,6(8):e24099.

[82]Cabarcas SM,Mathews LA,Farrar WL.The cancer stem cell nichethere goes the neighborhood?[J].Inte J Cancer,2011,129(10):2315-2327.

[83]Garvalov BK,Acker T.Cancer stem cells:a new framework for the design of tumor therapies[J].J Mol Med(Berl),2011,89(2):95-107.

[84]Ito K,Bernardi R,Morotti A,et al.PML targeting eradicates quiescent leukaemia-initiating cells[J].Nature,2008,453(7198):1072-1078.

[85]Eyler CE,Wu Q,Yan K,et al.Glioma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2[J].Cell,2011,146(1):53-66.

[86]Jinushi M,Chiba S,Yoshiyama H,et al.Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells[J].Proc Natl Acad Sci USA,2011,108(30):12425-12430.

[87]Wang H,Lathia JD,Wu Q,et al.Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth[J].Stem Cells,2009,27(10):2393-2404.

The molecular mechanism and regulatory pathway of cancer stem cell

TU Yan-Yang1,WANG Zhen1,ZHANG Yong-Sheng2,WANG Liang3
Fourth Military Medical University:1Department of Experimental Surgery,Tangdu Hospital;2Tangdu Hospital;3Department of Brain Surgery,Tangdu Hospital,Xi'an 710038,China

Malignant tumor is one of the most harmful diseases that threat human health and life.Traditional methods for the cancer therapy include surgery,chemotherapy,radiotherapy and other methods to remove existing cancer cells.The treatment of tumor is still a big problem today,and the fundamental reason is that we are unclear about the mechanism of cancer metastasis and recurrence.In recent years,the researches on the tumor cell surface markers,tumor cell proliferation and tumorigenic ability make people put forward the theory of cancer stem cell(CSC).Cancer stem cell is a small population of tumor cells that has unlimited self-renewal ability and heterogeneous immunodeficiency animals tumorigenic ability of stem cells in the tumor cells.They play a key role in the tumor growth and metastasis.Cancer stem cell theory provides a new way for tumor therapy.In this paper,we will summarize the formation and development process of tumor stem cell theory,we discuss the cancer stem cell generation,surface makers,self-renewal and relative regulatory pathways.These theory mechanisms may provide help for malignant tumor targeting therapy.

malignant tumor;cancer stem cell;regulatory pathway;targeting therapy

R730.3

A

2095-6894(2016)11-01-07

2016-10-08;接受日期:2016-10-18

國家自然科學基金資助項目(81272419,81572983,81402081)

涂艷陽.副主任醫師,副教授.E-mail:Tu.fmmu@gmail.com

張永生.教授,主任醫師,院長.E-mail:zhangys@fmmu.edu.cn

猜你喜歡
信號
信號
鴨綠江(2021年35期)2021-04-19 12:24:18
完形填空二則
7個信號,警惕寶寶要感冒
媽媽寶寶(2019年10期)2019-10-26 02:45:34
孩子停止長個的信號
《鐵道通信信號》訂閱單
基于FPGA的多功能信號發生器的設計
電子制作(2018年11期)2018-08-04 03:25:42
基于Arduino的聯鎖信號控制接口研究
《鐵道通信信號》訂閱單
基于LabVIEW的力加載信號采集與PID控制
Kisspeptin/GPR54信號通路促使性早熟形成的作用觀察
主站蜘蛛池模板: 国产精品自拍露脸视频| 亚洲水蜜桃久久综合网站| 18禁黄无遮挡网站| 永久免费无码成人网站| 97视频免费在线观看| 国产福利免费视频| 波多野结衣久久高清免费| 国产理论最新国产精品视频| 国产亚洲精久久久久久无码AV| 精品国产aⅴ一区二区三区| 国产日本一线在线观看免费| 天堂网亚洲综合在线| 国产成人亚洲综合a∨婷婷| 久久久噜噜噜久久中文字幕色伊伊 | 亚洲第一视频网站| 国内精自视频品线一二区| 国产亚洲精品在天天在线麻豆| 久久九九热视频| 国产成人亚洲日韩欧美电影| 香蕉伊思人视频| 99精品视频播放| 日本免费高清一区| 男女精品视频| yy6080理论大片一级久久| 久草热视频在线| 亚洲精品你懂的| 精品国产免费观看| 99视频免费观看| 91九色视频网| 欧美人与性动交a欧美精品| 久久婷婷国产综合尤物精品| 国产99免费视频| 国产精品成| 国产精品成人免费综合| 免费99精品国产自在现线| 国产成人综合亚洲欧美在| 强乱中文字幕在线播放不卡| 成年A级毛片| 拍国产真实乱人偷精品| 亚洲精品老司机| 亚洲一级毛片免费看| 8090成人午夜精品| 欧美成人综合视频| 一级全黄毛片| 日韩午夜福利在线观看| 操国产美女| 久久久精品无码一二三区| 久久久噜噜噜| 精品久久777| 亚洲开心婷婷中文字幕| 丰满人妻中出白浆| 亚洲精品视频免费观看| 毛片在线播放网址| 亚洲成a人在线观看| 国产第二十一页| 亚洲香蕉在线| 久久网欧美| 四虎影视永久在线精品| 国产美女91视频| 亚洲综合精品第一页| 99re热精品视频国产免费| 国产99热| 重口调教一区二区视频| 国产在线拍偷自揄观看视频网站| 免费毛片视频| 91成人免费观看| 国内视频精品| 日韩精品欧美国产在线| 成年午夜精品久久精品| 亚洲黄色网站视频| 日韩AV无码一区| 国产91久久久久久| 国产精品丝袜在线| 国产办公室秘书无码精品| 日韩在线视频网站| 精品福利一区二区免费视频| 国产99视频免费精品是看6| 九色视频一区| 日韩成人午夜| 亚洲视频免费在线看| 天堂网亚洲系列亚洲系列| 无码国产偷倩在线播放老年人|