陶 霖,鄭東明
(中國醫科大學附屬盛京醫院神經內科,遼寧 沈陽 110004)
PET顯像技術在阿爾茨海默病診斷中的應用
陶霖,鄭東明
(中國醫科大學附屬盛京醫院神經內科,遼寧 沈陽110004)
阿爾茨海默病(AD)是老年期癡呆最常見類型。目前,分子影像學在AD的基礎與臨床研究中發揮著重要的作用。PET功能顯像可通過各種顯像劑敏感、特異性地反映AD的病理生理學改變,筆者將重點介紹18F-FDG顯像劑和淀粉樣蛋白顯像劑在AD中的應用,詳細闡述PET顯像在AD病因學研究、早期診斷、鑒別診斷、疾病轉歸和藥物治療中的作用。
阿爾茨海默病;正電子發射斷層顯像術
阿爾茨海默病(Alzheimer’s disease,AD)是臨床最為常見老年期癡呆疾病,嚴重危害老年人的身心健康和生活質量。AD的診斷尤其是早期診斷是早期干預AD、提高AD治療效果的前提,但在臨床工作中由于缺少客觀的輔助檢查手段而較為困難。近年來,大量的研究推動了正電子發射斷層成像(PET)技術在AD診斷和病情評估中的應用,PET已經成為AD早期診斷的重要輔助手段。現已研發了針對AD各病理環節不同靶點的PET顯像劑,包括糖代謝類、Aβ結合類、神經遞質及受體類、tau蛋白結合類、小膠質細胞活化的神經炎癥類等顯像劑。其中,糖代謝類顯像劑18F-FDG(18F-2-fluora-deoxy-D-glucose,18F標記的脫氧葡萄糖)和Aβ顯像劑對AD診斷和病情評估方面的作用已經得到充分的論證并取得了大量的循證醫學證據,對臨床有現實的指導意義。其他種類的PET顯像劑目前還處于科研階段。目前國內雖然有PET設備的單位越來越多,但是針對AD等神經系統變性病能夠進行PET檢查的單位還很少,認識不足是主要原因之一。本綜述將圍繞18F-FDG和淀粉樣蛋白顯像PET在AD臨床中的應用價值做以綜述。
18F-FDG PET開展較早、技術較成熟,已被廣泛應用于臨床。18F-FDG能被細胞膜葡萄糖轉運體結合進入細胞,通過己糖激酶磷酸化生成6-PO4-18F-FDG,因分子結構改變不能進一步參加糖代謝而較長時間滯留在細胞內,其顯影反應的是細胞的葡萄糖代謝水平。當神經元變性、丟失及突觸功能異常時,所在區域的糖代謝水平下降,18F-FDG被神經元攝取減少,從而在顯像階段出現受累區域核素信號強度的改變。
大量AD患者的18F-FDG PET研究顯示AD患者葡萄糖代謝降低的區域主要涉及顳頂區、顳葉內側、后扣帶回、楔前葉皮質,隨著病情進展,額葉也逐漸受累[1]。這些區域也是Aβ顯著沉積的區域[2-3],也反映出AD患者腦糖低代謝程度與臨床癥狀嚴重程度呈正相關[4]。而正常老年人隨年齡增長,FDG低代謝出現在額葉至外側裂區域、前扣帶回,而不累及顳頂葉、后扣帶回及海馬區,說明AD患者FDG代謝的改變與年齡增長無關[5]。Herholz等[6]對396例AD和110例對照組的多中心研究顯示,FDG PET對輕、中度AD患者診斷的靈敏度及特異度均達93%。
18F-FDG PET在AD臨床中起到的另一個重要的作用就是用來評價病情嚴重的程度,也可以用來評估AD藥物治療的效果。Ishii等[7]對 68例AD患者分為輕、中、重度 3組,FDG PET檢查發現重度AD組所有皮質區代謝均降低;中度AD組頂顳葉、額葉代謝降低;輕度AD組僅有頂葉代謝降低。另外在2014年AD的IWG-2科研指南中,18F-FDG PET被劃歸為評價AD病情輕重的生物學標記物[8]。FDG PET還可檢測AchE抑制劑治療前后rCMRglu的變化,應用美曲豐Metrifonate治療AD 3月后,PET顯像發現治療有效者左側額頂葉和雙側顳葉代謝明顯增高,表明臨床認知改善和相關腦區代謝增加有關[9]。
18F-FDG PET對于識別輕度認知功能障礙 (Mild cognitive impairment,MCI)及預測MCI的轉歸有一定的價值。許多研究顯示MCI患者在開始有輕微認知下降時,FDG PET就已顯示出相應腦區糖代謝降低的表現,如后扣帶回-楔前葉、內側顳葉[10]、顳頂區[11],但代謝減低程度要遠低于 AD患者,受累腦葉的范圍也小于AD患者[12-14]。進展型MCI患者FDG PET代謝減低更明顯、減低的速率更快。Drzezga等[15]隨訪研究結果顯示進展型MCI后扣帶回及頂葉代謝較穩定型MCI進一步減低。Caroli等[1]的研究顯示,FDG PET能從MCI患者中識別那些將進展為AD的患者,其鑒別的靈敏度、特異度可高達80%。
18F-FDG PET對于AD與其他變性類癡呆的鑒別也有重要幫助。額顳癡呆18F-FDG PET的改變主要集中在額顳葉區域出現低代謝,而較少累及頂葉及邊緣系統,且額顳葉的受累雙側多不對稱[16];另外Frederick等[17]FDG PET研究結果顯示AD患者后扣帶回代謝減低,而FTD患者的后扣帶回未受累,所以后扣帶回低代謝可以作為兩者的鑒別。但對不典型的額顳葉癡呆和AD,因受累腦區可相互重疊,單用FDG顯像則不能鑒別,可考慮聯合PiB PET在病理水平上進一步鑒別。路易體癡呆患者與AD低代謝腦區相似,但前者的海馬區活性相對保留,枕葉皮層受累較明顯,18F-FDG PET對于AD和路易體癡呆的鑒別能力有限[18-19]。
FDG PET雖然可以通過反映AD患者相關腦區低代謝程度對AD的診斷有一定的意義[20],但實質上反映的并不是AD的特異性的病理改變。淀粉樣蛋白示蹤PET則可以反映腦內Aβ的異常沉積從而使生前確診AD成為可能。目前淀粉樣蛋白PET可作為不同階段AD診斷的重要生物學標記物,涵蓋臨床前期、前驅期和AD癡呆的所有階段。
針對Aβ聚集物檢測的示蹤劑有多種,其中最具代表性的是PiB復合物(Pittsburgh Compound B,PiB),其為硫磺素T和二苯乙烯為母體結構[21-22]。11C標記的PiB能特異性地與β樣淀粉蛋白斑塊結合[23],特異性極高,已在國外廣泛應用于臨床。2004年Klunk等[24]首次將PiB應用在人體臨床研究,16例輕度AD患者和9例正常對照組行PiB PET掃描,結果顯示在公認的Aβ沉積區域PiB保留值顯著升高。Devanand 等[25]研究示楔前葉PiB的結合力對AD診斷的靈敏度及特異度均為94.4%。
PiB最為重要的價值是可以在MCI階段甚至是更早的AD臨床前期就可以識別AD患者,實現AD的早期診斷,也使AD的早期干預成為可能。Okello等[26]應用PiB PET顯像來評估MCI向AD轉化率的3年隨訪研究結果顯示,17例PiB陽性的MCI患者中有14例進展為AD,而14例PiB陰性的MCI患者僅有1例發展為AD;另有Forsberg等[27]研究顯示PIB殘留多的7例MCI患者隨訪證實均發展為AD,而PiB殘留較少的10例MCI患者隨訪后無1例發展為AD。回顧近年來多項MCI淀粉樣蛋白PET研究,結果顯示其中的59%淀粉樣蛋白陽性,這類人群后經隨訪證實大部分MCI轉化為AD,表明PiB PET陽性的MCI患者更容易向AD轉歸[28-29]。是否PiB陽性就意味著患者一定會進展為AD尚不十分確定,尚需進一步長期觀察。
PiB對于鑒別AD和其他癡呆意義重大。Engler等[30]報告,額顳葉癡呆患者各皮質區及海馬均未發現明顯PiB放射性滯留,所以尤其對于不典型額顳葉癡呆患者,或在應用FDG顯像后,仍不能鑒別AD及FTD時,可以考慮進行PiB顯像。王穎等[31]研究結果顯示存在2例AD患者經FDG成像后,仍難以和額顳葉癡呆相鑒別,且1例患者頭MRI提示額葉萎縮最為嚴重,但最終根據PiB陽性結果而診斷為AD。對于路易體及帕金森病癡呆的患者,PiB PET結果可呈陽性,可能是因為Aβ蛋白對此類譜系疾病的癡呆有不同程度的影響。
PiB PET對于早期診斷AD意義重大,但卻不適合用來判定病情的嚴重程度,這一點正好和FDG PET形成互補。Engler等[32]對16例AD患者進行FDG PET與PiB PET的隨訪研究,發現時隔2年的兩次掃描相應腦區PiB結合量無明顯增加,但皮質低代謝程度顯著下降。Kadir等[33]聯合應用PiB和FDG隨訪3~5年的研究結果發現,AD組PiB攝取值趨于平穩沒有變化,但rCMRgic及認知功能明顯下降。上述研究結果表明淀粉樣物質的沉積和神經元功能的喪失并非是平行關系,AD患者Aβ沉積在病情較早的階段就達到一個飽和狀態,沉積量并不隨病情的進展而增加,但FDG PET反映的腦代謝卻隨著病情加重呈持續降低的改變。因此,淀粉樣蛋白PiB在篩選AD的高危人群、AD的早期診斷和鑒別診斷方面更具優勢,而FDG PET更適合用于監測病情進展、評估病情程度及評價藥物效果方面更優。
PET在AD的診斷和臨床評估方面顯示出巨大的實用價值,但目前臨床應用仍面臨一些問題:①檢查費用昂貴,技術設備要求較高,限制廣泛使用。②是否淀粉樣蛋白顯像劑PET顯示出有異常沉積的健康人都會在將來進展為AD還需要進行大規模長期隨訪觀察。③定量分析及統計軟件應用復雜,亟待規范化和標準化。雖然面臨諸多技術問題,但隨著PET技術的飛速發展,有理由相信PET顯像在今后神經變性病的臨床診斷及藥物研發過程中將起到重要的作用。
[1]Caroli A1,Prestia A,Chen K,et al.Summary metrics to assess Alzheimer disease-related hypometabolic pattern with18F-FDG PET:head-to head comparison[J].J Nucl Med,2012,53(4): 592-600.
[2]Klunk WE,Engler H,Nordberg A,et al.Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B[J].Ann Neurol,2004,55(3):306-319.
[3]Buckner RL,Snyder AZ,Shannon BJ,et al.Molecular,structural, and functional characterization of Alzheimer’s disease:Evidence for a relationship between default activity,amyloid,and memory [J].J Neurosci,2005,25(34):7709-7717.
[4]Landau SM,Harvey D,Madison CM,et al.Associations between cognitive,functional,and FDG-PET measures of decline in AD and MCI[J].Neurobiol Aging,2011,32(7):1207-1218.
[5]左傳濤,劉永昌,管一暉,等.年齡對腦葡萄糖代謝的影響[J].中國醫學計算機成像雜志,2001,7(3):204-206.
[6]Herholz K,Salmon E,Perani JC,et al.Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET[J].Neuroimage,2002,17(1):302-316.
[7]Ishii K,Sasaki M,Kitagaki H,et al.Reduction of cerebellar glucose metabolismin advanced Alzheimer’s disease[J].J Nucl Med,1997,38(6):925-928.
[8]Dubois B,Feldman HH,Jacova C,et al.Advancing research diagnostic criteria for Alzheimer’s disease:the IWG-2 criteria[J]. Lancet Neurol,2014,13(6):614-629.
[9]Mega MS,Cummings JL,O’Connor SM,et al.Cognitive and metabolic responses to metrifonate therapy in Alzheimer disease [J].Neuropsychiatry Neuropsychol Behav Neurol,2001,14(1):63-68.
[10]Pagani M,Dessi B,Morberlli S,et al.MCI patients declining and declining at mid-termfollow-up:FDG-PETfindings[J]. Curr Alzheimer Res,2010,7(4):287-294.
[11]Chetelat G,Eustache F,Viader F,et al.FDG-PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment[J].Neurocase,2005,11(1):14-25.
[12]Mosconi L,Tsui WH,Herholz K,et al.Multicenter standardized18F-FDGPETdiagnosisofmildcognitiveimpairment, Alzheimer’s disease,and other dementias[J].J Nucl Med,2008, 49(3):390-398.
[13]Del SoleA,Clerici F,Chiti A,et al.Individual cerebral metabolic deficits inAlzheimer’s disease andamnestic mild cognitive impairment:an FDG PET study[J].Eur J Nucl Med Mol Imaging,2008,35(7):1357-1366.
[14]華逢春,馮曉源,趙倩華,等.輕度認知障礙及阿爾茨海默病腦葡萄糖代謝改變的統計參數圖的PET研究 [J].Chin J Clin Neurosci,2013,21(2):126-132.
[15]Drzezga A,Grimmer T,Riemenschneider M,et al.Prediction of individual clinical outcome in MCI by means of genetic assessment and(18)F-FDG PET[J].J Nucl Med,2005,46(10):1625-1632.
[16]李祖貴,高碩,張本恕,等.AD型與非AD型變性癡呆大腦葡萄糖代謝的SPM分析[J].中華核醫學雜志,2008,28(1):13-16.
[17]Bonte FJ,Harris TS,Roney CA,et al.Differential diagnosis between Alzheimer’s and frontotemporal disease by the posterior cingulate sign[J].J Nucl Med,2004,45(5):771-774.
[18]Minoshima S,Foster NL,Sima AA,et al.Alzheimer’s disease versus dementia with Lewy bodies:cerebral metabolic distinction with autopsy confirmation[J].Ann Neurol,2001,50(3):358-365.
[19]Okamura N,Arai H,Higuchi M.[18F]FDG-PET study in dementia with Lewy bodies and Alzheimer’s disease[J].Prog Neuropsychopharmacol Biol Psychiatry,2001,25(2):447-456.
[20]Silverman DH.Brain18F-FDG PET in the diagnosis of neurodegenerative dementias:comparison with perfusion SPECT and with clinical evaluations lacking nuclear imaging[J].J Nucl Med, 2004,45(4):594-607.
[21]Henriksen G,Yousefi BH,Drzezga A,et al.Development and evaluation of compounds for imaging of beta-amyloid plaque by means of positron emission tomography[J].Eur J Nucl Med Mol Imaging,2008,35(Suppl 1):S75-S81.
[22]Cai L,Innis RB,Pike VW.Radioligand development for PET imaging of beta-amyloid(Abeta)-current status[J].Curr Med Chem,2007,14(1):19-52.
[23]MathisCA,Bacskai BJ,KajdaszST,et al.Alipophilic thioavin-Tderivativefor positronemissiontomography(PET) imaging of amyloid in brain[J].Bioorg Med Chem Lett,2002, 12(3):295-298.
[24]Klunk WE,Engler H,Nordberg A,et al.Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B[J].Ann Neurol,2004,55(3):306-319.
[25]Devanand DP,Mikhno A,Pelton GH,et al.Pittsburgh compound B(11C-PIB)and fluorodeoxyglucose(18F-FDG)PET in patients with Alzheimer disease,mild cognitive impairment,and healthy controls[J].J Geriatr Psychiatry Neurol,2010,23(3): 185-198.
[26]Okello A,Koivunen J,Edison P,et al.Conversion of amyloid positive and negative MCI to AD over 3 years:an11C-PiB PET study[J].Neurology,2009,73(10):754-760.
[27]Forsberg A,Engler H,Almkvist O,et al.PET imaging of amyloid deposition in patients with mild cognitive impairment[J].Neurobiol Aging,2008,29(10):1456-1465.
[28]Kadir A,Nordberg A.Target-specic PET probes for neurodegenerative disorders related to dementia[J].J Nucl Med,2010, 51(9):1418-1430.
[29]Forsberg A,Engler H,Almkvist O,et al.PET imaging of amyloiddepositioninpatients withmildcognitiveimpairment[J].Neurobiol Aging,2008,29(10):1456-1465.
[30]Engler H,Santillo AF,Wang SX,et al.In vivo amyloid imaging with PET in frontotemporal dementia[J].Eur J Nucl Med Mol Imaging,2008,35(1):100-106.
[31]王穎,高碩,蔡莉,等.18F-FDG和11C-PIB PET聯合腦顯像對阿爾茨海默病及額顳癡呆的鑒別診斷價值初探 [J].天津醫藥,2013,41(5):401-403.
[32]Engler H,Forsberg A,Almkvist O,et al.Two-year follow-up of amyloiddepositioninpatientswithAlzheimer’sdisease[J]. Brain,2006,129(11):2856-2866.
[33]Kadir A,Almkvist O,Forsberg A,et al.Dynamic changes in PETamyloidandFDGimagingatdifferentstagesof Alzheimer's disease[J].Neurobiol Aging,2012,33(1):198.e1-14.
Application of PET imaging in the diagnosis of Alzheimer’s disease
TAO Lin,ZHENG Dong-ming
(Department of Neurology,Shengjing Hospital of China Medical University,Shenyang 110004,China)
Alzheimer’s disease is the most common cause of dementia in the current elderly population.Molecular imaging plays an important role in the basic and clinical research of Alzheimer’s disease.PET can detect pathophysiological changes in Alzheimer’s disease with different radiotracers.This paper will focus on evaluating the value of18F-FDG and amyloid PET imaging in Alzheimer’s disease,and describe in detail the role of PET imaging in the research of etiology,early diagnosis,differential diagnosis,prognosis and medical treatment of Alzheimer’s disease.
Alzheimer diseases;Positron-emission tomography
R749.16;R817.4
A
1008-1062(2016)05-0367-03
2015-11-05
陶霖(1984-),男,遼寧沈陽人,在讀碩士研究生。E-mail:799161682@qq.com
鄭東明,中國醫科大學附屬盛京醫院神經內科,110004。E-mail:zhengdm@sj-hospital.org