第一作者冷伍明男,教授,博士生導(dǎo)師,1964年生
振動(dòng)荷載作用下重載鐵路路基粗顆粒土填料臨界動(dòng)應(yīng)力試驗(yàn)研究
冷伍明,劉文劼,周文權(quán)
(中南大學(xué)土木工程學(xué)院, 長沙410075)
摘要:由于重載鐵路路基表層為粗顆粒土填料,直接承受軌道結(jié)構(gòu)傳遞的列車動(dòng)載往復(fù)作用,其臨界動(dòng)應(yīng)力會(huì)影響累積變形,利用自行開發(fā)的動(dòng)三軸試驗(yàn)系統(tǒng)進(jìn)行不同圍壓、動(dòng)應(yīng)力幅值、含水率條件下粗顆粒土填料的持續(xù)振動(dòng)試驗(yàn),獲得粗顆粒土累積動(dòng)應(yīng)變與振次關(guān)系曲線,并分析圍壓、含水率對累積動(dòng)應(yīng)變增長影響;在獲得不同含水率條件下粗顆粒土的臨界動(dòng)應(yīng)力比線基礎(chǔ)上提出計(jì)算臨界動(dòng)應(yīng)力經(jīng)驗(yàn)公式。
關(guān)鍵詞:重載鐵路;粗顆粒土;動(dòng)三軸試驗(yàn);累積動(dòng)應(yīng)變;臨界動(dòng)應(yīng)力
基金項(xiàng)目:國家自然科學(xué)基金重點(diǎn)項(xiàng)目(U1361204);國家自然科學(xué)
收稿日期:2014-08-20修改稿收到日期:2014-11-13
中圖分類號(hào):U214175文獻(xiàn)標(biāo)志碼:A
Testing research on critical cyclical stress of coarse-grained soil filling in heavy haul railway subgrade
LENGWu-ming,LIUWen-jie,ZHOUWen-quan(School of Civil Engineering Central South University,Changsha 410075, China)
Abstract:The surface layer of heavy haul railway subgrade is mainly composed of coarse-grained soil (CGS).The accumulative deformation characteristic of CGS is a very important issue because the CGS directly supports the cyclical train loading transfered by upper structure. Previous researches reveal that critical cyclical stress ratio (CCSR) is a significant factor of accumulative deformation characteristic. By using a self-developed dynamic triaxial testing system, some sustained vibration tests were carried out on CGS with different confining pressures, dynamic stress amplitudes and water contents. Some curves of accumulative dynamic strain versus vibration times were obtained by the tests. The influences of confining pressure and water content on the increase of accumulative dynamic strain were discussed. Furthermore, the CCSR lines of CGS with different water contents were acquired. Finally, an empirical formula for calculating the critical cyclical stress was put forward.
Key words:heavy haul railway; coarse-grained soil; dynamic triaxial test; accumulative dynamic strain; critical cyclical stress
隨對重載軌道交通的重視,長期動(dòng)力循環(huán)荷載作用下重載鐵路路基土體的累積變形規(guī)律頗受工程、學(xué)術(shù)界關(guān)注。列車運(yùn)行對路基產(chǎn)生的荷載可簡化為循環(huán)荷載,其對路基表層粗顆粒土填料影響最明顯。由于重載列車的動(dòng)力效應(yīng)較大,粗顆粒土在列車循環(huán)動(dòng)荷載長期作用下,除產(chǎn)生彈性變形亦產(chǎn)生塑性累積變形,若動(dòng)應(yīng)力過大或排水不暢累積變形會(huì)迅速增加,使路基產(chǎn)生較大附加沉降,甚至?xí)?dǎo)致失穩(wěn)破壞。眾多研究表明,列車產(chǎn)生的動(dòng)應(yīng)力與土體臨界動(dòng)應(yīng)力間大小關(guān)系影響累積動(dòng)變形的增長特點(diǎn)。確定路基粗顆粒土在某工作狀態(tài)下的臨界動(dòng)應(yīng)力對預(yù)測路基沉降具有重要意義[1-3]。
目前對土體臨界動(dòng)應(yīng)力試驗(yàn)研究已取得一定成果,Seed等[4-6]通過動(dòng)三軸試驗(yàn)研究頻率、應(yīng)力歷史、壓實(shí)度、圍壓等因素對土體產(chǎn)生的破壞影響;Heath等[7]對倫敦粘土進(jìn)行動(dòng)三軸疲勞試驗(yàn),獲得累積應(yīng)變及荷載作用次數(shù)關(guān)系曲線,認(rèn)為不同動(dòng)應(yīng)力作用下該曲線可分為兩組不同走向,一組變形逐漸發(fā)展直到破壞,另一組變形速率逐漸緩慢最后達(dá)到穩(wěn)定狀態(tài)彈性條件,土體存在動(dòng)應(yīng)力臨界值。蔡英等[8]提出將土體所受動(dòng)應(yīng)力與其臨界動(dòng)應(yīng)力之比定義為動(dòng)應(yīng)力水平,并將不同動(dòng)應(yīng)力水平下的累積動(dòng)應(yīng)變增長曲線劃分為破壞型、衰減型及臨界型;焦貴德等[9]研究頻率對凍土臨界動(dòng)應(yīng)力影響,獲得臨界動(dòng)應(yīng)力隨動(dòng)荷載頻率增大而減小的結(jié)論;唐益群等[10]研究土體固結(jié)對臨界動(dòng)應(yīng)力影響,認(rèn)為固結(jié)偏應(yīng)力越大土體的臨界動(dòng)應(yīng)力越大;孫明智[11]通過試驗(yàn)發(fā)現(xiàn)干濕循環(huán)作用會(huì)降低土體的臨界動(dòng)應(yīng)力;劉增榮等[12]研究地鐵列車荷載下飽和黃土與濕型黃土的臨界動(dòng)應(yīng)力比范圍,并用Langmuir及Freundlich函數(shù)對穩(wěn)定型、破壞型黃土變形發(fā)展進(jìn)行回歸分析。
以上對動(dòng)荷載下土體臨界動(dòng)應(yīng)力的試驗(yàn)研究大多針對細(xì)顆粒土,而對粗顆粒土的研究較少;此外,現(xiàn)有對臨界動(dòng)應(yīng)力研究多處于定性分析階段,未提出定量表達(dá)式。為此,本文進(jìn)行不同圍壓、動(dòng)應(yīng)力幅值、含水率條件下重載鐵路路基粗顆粒土的大型動(dòng)三軸試驗(yàn),研究不同條件下土體累積動(dòng)應(yīng)變增長規(guī)律,分析圍壓、含水率對臨界動(dòng)應(yīng)力影響,并在此基礎(chǔ)上提出計(jì)算該類填料臨界動(dòng)應(yīng)力的經(jīng)驗(yàn)公式。
1試驗(yàn)儀器
鐵路路基粗顆粒土填料深度一般在3.0 m以內(nèi),實(shí)際側(cè)壓較低,大型動(dòng)三軸儀難以模擬低圍壓下粗粒土的實(shí)際受力環(huán)境。而國產(chǎn)大型動(dòng)三軸試驗(yàn)較難勝任長時(shí)間循環(huán)荷載試驗(yàn),且應(yīng)力控制精度不理想,不能滿足試驗(yàn)要求。為此本文設(shè)計(jì)并開發(fā)基于現(xiàn)有MTS與普通三軸圍壓室、可進(jìn)行長時(shí)間振動(dòng)及精準(zhǔn)控制的大型動(dòng)三軸持續(xù)振動(dòng)試驗(yàn)系統(tǒng),見圖1,該系統(tǒng)主要包括MTS動(dòng)力作用系統(tǒng)及控制系統(tǒng)、剛性反力架、大型圍壓室、導(dǎo)軌及支撐系統(tǒng)、真空及飽和系統(tǒng)、加水排水管路、變形測量系統(tǒng)、孔隙水壓測試系統(tǒng)。篇幅有限,各部件間的連接此處不詳述。

圖1 大型動(dòng)三軸試驗(yàn)系統(tǒng)全貌 Fig.1 Complete picture of the large-scale dynamic triaxial testing system
考慮施加動(dòng)力范圍及精度,本試驗(yàn)用MTS系統(tǒng)中100 kN動(dòng)態(tài)疲勞級作動(dòng)器為動(dòng)力來源,動(dòng)力施加由數(shù)字系統(tǒng)控制,采用多水泵冷卻系統(tǒng)保證長時(shí)間持續(xù)振動(dòng),據(jù)經(jīng)驗(yàn)振動(dòng)次數(shù)可達(dá)數(shù)十萬次,作動(dòng)器施加的動(dòng)應(yīng)力先行標(biāo)定,使其長時(shí)間振動(dòng)條件下動(dòng)應(yīng)力控制精度能維持在約0.1 kPa,因而能充分滿足本試驗(yàn)要求。試驗(yàn)用壓力室為YS30-3A靜三軸壓力室,所需圍壓由一定水頭高度的圍壓水箱提供,可通過調(diào)整水箱高程滿足不同圍壓要求。需指出的是,因試樣高60 cm,頂、底部水壓相對差值約6 kPa,施加圍壓時(shí)統(tǒng)一取試樣中部處側(cè)向液壓作為圍壓的控制標(biāo)準(zhǔn)(頂、底部水壓相對差值較大,其影響需進(jìn)一步探索)。圍壓系統(tǒng)連接水壓力表對圍壓值進(jìn)行實(shí)時(shí)監(jiān)測,每次振動(dòng)中圍壓波動(dòng)幅值<0.3 kPa,基本可忽略。軸向位移可通過MTS機(jī)自動(dòng)記錄亦可通過安裝在試樣頂端的電子位移測量儀測量,并通過轉(zhuǎn)換箱引入計(jì)算機(jī)實(shí)時(shí)監(jiān)測、自動(dòng)記錄,測量精度為0.01 mm。
2試驗(yàn)過程
2.1試驗(yàn)用土
試驗(yàn)用土由河砂、圓礫石、粘土組成,按50:50: 14.63比例進(jìn)行配比確保試驗(yàn)用土的級配能滿足規(guī)范[13]中關(guān)于A類土填料要求,試驗(yàn)用土的基本物理性質(zhì)見表1,其有效抗剪強(qiáng)度參數(shù)源于對該類粗顆粒土的大型靜三軸試驗(yàn)。試驗(yàn)用土級配曲線及軸向荷載施加方法見圖2。

圖2 試驗(yàn)用土級配曲線圖 Fig.2 Particle size distribution curve

最大干密度ρdmax/(g·cm-3)飽和含水率wsat/%不均勻系數(shù)Cu曲率系數(shù)Cc有效抗剪強(qiáng)度參數(shù)(飽和)φ'/(°)c'/kPa2.219.3801.253769
2.2試驗(yàn)方案
由于實(shí)際路基填料介于完全排水條件與完全不排水條件之間,而不排水條件下路基破壞的可能性更大。故考慮安全性本試驗(yàn)采用不排水方式。試樣用各向等壓固結(jié)方式,定義動(dòng)應(yīng)力比CSR為
(1)



表2 試驗(yàn)參數(shù)
*表示含水率為7.5%
據(jù)鐵路規(guī)程[14],將散狀土制成壓實(shí)系數(shù)0.97的圓柱體試樣(高600 mm,直徑300 mm),基本符合重載鐵路路基表層壓實(shí)標(biāo)準(zhǔn)。飽和試樣先進(jìn)行約2 h抽真空,采用水頭飽和方法達(dá)到飽和狀態(tài)(孔隙水壓力系數(shù)B>95%),飽和土含水率經(jīng)測定為9.3%。非飽和土含水率則由對散狀土加入一定水量進(jìn)行控制,經(jīng)測定,在加動(dòng)荷載前含水率相對變化在3%以內(nèi)。固結(jié)過程中使等向圍壓作用于試樣,當(dāng)孔隙水壓力<1 kPa時(shí)結(jié)束。為簡單模擬道砟、軌枕及鋼軌對路基產(chǎn)生的靜壓力,施加動(dòng)荷載前先向試樣施加軸向靜偏應(yīng)力(最小偏應(yīng)力)qcyc,min=15kPa。由于列車運(yùn)行對路基主要產(chǎn)生低頻效應(yīng)[15],因此正弦動(dòng)荷載頻率設(shè)為1Hz以模擬速度50km/h的重載列車對路基產(chǎn)生的荷載主頻。軸向荷載施加方法見圖3。

圖3 軸向荷載施加方法 Fig.3 The exerting method of axial loading
3試驗(yàn)結(jié)果及分析
土體在不排水動(dòng)三軸試驗(yàn)會(huì)發(fā)生破壞或維持動(dòng)力穩(wěn)定,通常采取一定標(biāo)準(zhǔn)對此狀態(tài)進(jìn)行判定。試驗(yàn)中,若累積動(dòng)應(yīng)變增量在2h內(nèi)小于1mm,則認(rèn)為試樣達(dá)到動(dòng)力穩(wěn)定狀態(tài)。采用累積動(dòng)應(yīng)變?chǔ)臿達(dá)到某閾值方法進(jìn)行破壞判定,該值設(shè)為15%。
3.1飽和土試驗(yàn)結(jié)果


圖4 飽和土試樣累積動(dòng)應(yīng)變與振次關(guān)系曲線 Fig.4 Saturated specimens’accumulative axial strainε a versus vibration number N
考慮不同試樣εa的增長特點(diǎn),將所有飽和試樣分為三種類型,分類方法見表3。

表3 據(jù)累積動(dòng)應(yīng)變增長特點(diǎn)劃分的試樣類型
(2)
本文將該線定義為臨界動(dòng)應(yīng)力比線CCSRL (Critical Cyclical Stress Ratio Line)。

圖5 飽和試樣動(dòng)應(yīng)力比與圍壓 Fig.5 Saturated specimens’ CSR versus confiningstressσ ′ 3,c
3.2非飽和粗顆粒土累積動(dòng)應(yīng)變

0.277 8ω2+2.91ω-3.1
(3)

圖6 非飽和土試樣累積動(dòng)應(yīng)變與振次關(guān)系曲線 Fig.6 Testingresults of unsaturated specimens’ accumulative axial strainε a versus vibration number N
(4)

由于該粗顆粒土的含水率通常在5%~9.3%之間,則式(4)第二項(xiàng)括號(hào)內(nèi)的值隨ω增大遞減,且恒大于零,由此可知含水率越大臨界動(dòng)應(yīng)力越小,圍壓越大臨界動(dòng)應(yīng)力越大。經(jīng)驗(yàn)算,計(jì)算結(jié)果符合大多數(shù)試樣試驗(yàn)結(jié)果。

圖7 非飽和試樣的動(dòng)應(yīng)力比與圍壓 Fig.7 Unsaturated specimens CSR versus confining stress σ ′ 3,c
4結(jié)論
(1)在循環(huán)動(dòng)應(yīng)力作用下,含水量差異會(huì)導(dǎo)致土顆粒間作用力發(fā)生變化,影響累積動(dòng)應(yīng)變增長特點(diǎn)。與飽和試樣相比,在相同圍壓下非飽和粗顆粒土需更大動(dòng)應(yīng)力才能發(fā)生破壞,且累積動(dòng)應(yīng)變增長速率較小。
(2)對粗顆粒土填料,據(jù)累積動(dòng)應(yīng)變隨振次增長規(guī)律,可將土體劃分為衰減型、破壞型、臨界型。臨界型對應(yīng)的動(dòng)應(yīng)力為臨界動(dòng)應(yīng)力,當(dāng)實(shí)際動(dòng)應(yīng)力小于臨界動(dòng)應(yīng)力時(shí)累積動(dòng)應(yīng)變隨振次增加逐漸趨于穩(wěn)定。因此應(yīng)使列車產(chǎn)生的動(dòng)應(yīng)力低于路基填料的臨界動(dòng)應(yīng)力。
(3)圍壓增大使土顆粒間相互約束更緊密,可提升整個(gè)土體結(jié)構(gòu)抵抗外力破壞的能力。
(4)含水率越大粗顆粒土填料的臨界動(dòng)應(yīng)力越小,從而增加路基發(fā)生破壞的可能性。路基排水應(yīng)足夠重視,必要時(shí)可采取措施,如在路基中埋置排水材料、設(shè)置排水溝等。
參考文獻(xiàn)
[1]Stewart H. Permanent strain from cyclic variable-amplitude loadings[J]. Geotechnical Engineering ASCE,1986,112(6):646-660.
[2]杜攀峰,廖立堅(jiān),楊新安.路基病害的智能識(shí)別[J].鐵道學(xué)報(bào),2010,32(6):142-146.
DU Pan-feng, LIAO Li-jian, YANG Xin-an.Intelligent recognition of defects in railway subgrade[J].Journal of the China Railway Society, 2010, 32(6):142-146.
[3]周建,龔曉南.循環(huán)荷載作用下飽和軟粘土應(yīng)變軟化研究[J].土木工程學(xué)報(bào),2000,33(5):75-78.
ZHOU Jian,GONG Xiao-nan.Study on strain softening of saturated soft clay under cyclic loading[J]. Journal of Civil Engineering,2000,33(5):75-78.
[4]Seed H B,Chan C K .The effect of stress history and frequency of stress application on the deformation of clay subgrades under repeated loading[C]//Proceedings of Highway Research Board. Washington D.C.: Research Board, National Research Council, 1958:128.
[5]Ogawa K. Strength and deformation of compacted soil subjected to repeated stress applications[C]// Proceedings of the 6th international conference on soil mechanics and foundation engineering[A]. Toronto: The University Press, 1965:264-267.
[6]Boulanger R W, Seed R B. Liquefaction of sand under bidirectional monotonic and cyclic loading[J].Journal of Geotechnical Engineering, 1995, 121(12):870-878.
[7]Heath D L, Shenton M J, Sparrow R W, et al. Design of conventional rail track foundation[J]. Proc of the Institution of Civil Engineers, 1972, 51(3): 49-57.
[8]蔡英,曹新文.重復(fù)加載下路基填土的臨界動(dòng)應(yīng)力和永久變形初探[J].西南交通大學(xué)學(xué)報(bào), 1996,31(1):1-5.
CAI Ying, CAO Xin-wen. Study for the critical dynamic stress and permanent strain of the subrgade-soil under repeated loading[J].Journal of Southwest Jiaotong University, 1996,31(1):1-5.
[9]焦德貴,馬薇,趙淑萍,等.高溫凍結(jié)粉土的累積應(yīng)變和臨界動(dòng)應(yīng)力[J].巖石力學(xué)與工程學(xué)報(bào),2001,30(5):3193-3198.
JIAO De-gui,MA Wei,ZHAO Shu-ping, et al.Accumulated strain and critical dynamic stress of frozen silt at high temperature[J].Chinese Journal of Rock Mechanics and Engineering,2001,30(5):3193-3198.
[10]唐益群,黃雨,葉為民,等.地鐵列車荷載作用下隧道周圍土體的臨界動(dòng)應(yīng)力比和動(dòng)應(yīng)變分析[J].巖石力學(xué)與工程學(xué)報(bào), 2003,22(9):1566-1570.
TANG Yi-qun,HUANG Yu,YE Wei-min, et al .Critical dynamic stress ratio and dynamic strain analysis of soils around the tunnel under subway train loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(9):1566-1570.
[11]孫明智.改良土的臨界動(dòng)應(yīng)力及靜動(dòng)比[J].路基工程, 2004, 2:30-32.
SUN Ming-zhi. Improved soil’s critical dynamic stress and static-dynamic ratio[J].Roadbed Engneering, 2004, 2:30-32.
[12]劉增榮,王鑫,張柯,等.黃土在地鐵列車荷載作用下的臨界動(dòng)應(yīng)力比及動(dòng)應(yīng)變發(fā)展模型的試驗(yàn)研究[J].西安建筑科技大學(xué)學(xué)報(bào):自然科學(xué)版,2010,42(6):761-767.
LIU Zeng-rong,WANG Xin,ZHANG Ke, et al.Tentative study on the critical dynamic stress ratioand dynamic strain development model of loessunder metro-induced loading [J].Journal of Xi’an University of Architecture and Technology:Natural Science,2010,42(6):761-767.
[13]TB10001-2005,鐵路路基設(shè)計(jì)規(guī)范[S].
[14]TB10102-2010,鐵路工程土工試驗(yàn)規(guī)程[S].
[15]劉學(xué)毅,王平.車輛-軌道-路基系統(tǒng)動(dòng)力學(xué)[M].成都:西南交通大學(xué)出版社,2010.
