王 磊,伍敏暉,何 梅
(北京市營養源研究所特殊膳食用食品研發中心,北京100069)
姜黃素是從姜科植物姜黃中提取的一種色素,也存在于其他姜科植物中。許多研究顯示,姜黃素具有抗炎、抗氧化、降血脂、抑制Ⅱ型糖尿病并發癥、抑制血栓和心肌梗塞、抑制肥胖、延緩衰老、抗癌等廣泛的生物及藥理活性[1-4],并具有良好的安全性。但是姜黃素不易溶于水,在中性至堿性pH條件下不穩定,對光、熱、鐵離子敏感,耐光性、耐熱性、耐金屬離子性較差[5]。由于姜黃素進入人體內的濃度較低,并且易被代謝分解,導致生物利用率不高,使得姜黃素的應用受到極大的限制[6-7]。因此,在保持姜黃素生理活性的同時增加其溶解度,增加姜黃素在體內的吸收率,是提高姜黃素生物利用率的關鍵因素,而通過改變劑型來提高姜黃素的生物利用率是一種重要而又方便的手段。目前,利用納米技術運載姜黃素已成為研究的熱點,研究內容多集中于納米粒、微球、脂質體、納米乳、微囊和糊精包合物等[5,8-25]。筆者就以上遞送系統提高姜黃素生物利用率及其在食品工業中的應用進行了綜述。
1.1 姜黃素納米粒 研究表明,姜黃素溶解性與其粒徑大小有著非常重要的關系,粒徑越小,口服后姜黃素晶體越易分散于腸道中,有效發揮其生理功能。納米藥物主要是將藥物的微粒或將藥物吸附包裹在載體中,制成納米尺寸(10~100 nm)的微粒,再以其為基礎制成不同種類的劑型。利用納米微粒運載姜黃素,可以提高姜黃素的運載量,保持運載過程中姜黃素的活性,同時提高運載體系的穩定性。Zhang等以水溶性良好的甜茶素為載體材料,在高壓加熱條件下,采用噴霧干燥技術制備了粒徑在8 nm左右的姜黃素-甜茶素納米粒[26],研究結果顯示,隨著甜茶素比例的增加(1% ~10%),姜黃素在水溶液中的溶解度從61.00 mg/L顯著增加到2.32 g/L。Xie等以聚乳酸-羥基乙酸共聚物(PLGA)為載體,制備的姜黃素納米粒溶解性顯著提高,增強了藥物在腸道內的緩釋吸收[27]。
1.2 姜黃素脂質體 脂質體是利用磷脂分子的雙親性制備而成,在溶液中,當磷脂分子形成單層微膠束或是磷脂雙分子層時,姜黃素進入到微膠束的疏水性區域中,從而提高姜黃素的溶解度和生物利用率[28]。Lin等在制備姜黃素脂質體時,應用薄膜分散高壓均質法結合凍干工藝,姜黃素脂質體的平均粒徑為 120.10 nm,zeta電位 -50.50 mV,載藥量4.10%,包封率95.45%,姜黃素脂質體對小鼠肝癌瘤株H22的抑制率比自制的姜黃素注射液可增加31.50%[29]。試驗結果表明,姜黃素制成脂質體后,能提高藥物的抑瘤率和穩定性。Takahashi等比較了不同類型卵磷脂(SLP-WHITE和SLP-PC70)制備的姜黃素脂質體的理化性質,研究表明,當姜黃素為2.50%(質量比)、SLP-PC70為5.00%時,制備的脂質體有較高的包封率(68.00%),在水溶液中分散均勻[30]。以大鼠為模型的口服給藥,評價姜黃素生物利用率,結果顯示,該姜黃素脂質體血漿中抗氧化活性增加,姜黃素吸收速度及含量均有較大提高。
1.3 姜黃素微球和微囊 微囊化包埋技術系利用天然的或合成的高分子材料或共聚物做囊膜壁殼,將固體或液體藥物包裹而成微型膠囊(簡稱微囊),外觀呈粒狀或圓球形,一般直徑在5~400μm。若使藥物溶解或分散在高分子材料基質中,形成基質型微小的球狀實體的固體骨架物稱微球。Li等制備了姜黃素聚乳酸磁性微球,此微球將四氧化三鐵磁性材料被包裹于其中[31]。微球內磁性微粒可以運載藥物更加準確地定位靶器官或靶細胞,提高藥物的治療效果,且可以延遲藥物的釋放。Shahani等采用溶劑揮發法制備姜黃素微球,并以聚乳酸-羥基乙酸共聚物(PLGA)為載體材料,當PLGA中兩嵌段的比例為1∶1,并且采用溶劑快速揮發法時,姜黃素微球的載藥量顯著提高,達到33.60%,粒徑為20.80 μm[32]。Fan等以明膠和阿拉伯膠為囊材,采用復凝聚法制備姜黃素緩釋微囊[33]。姜黃素微囊最適制備工藝為膠藥比5∶1,攪拌速度為 200 r/min,膠液濃度 2.50%,pH 為 3.80。在最適條件下制備3批含藥微囊,包封率分別為84.56%、86.21%和85.22%,說明最佳工藝條件重復性好。
1.4 姜黃素納米乳化體系 納米乳化體系具有穩定性好,制備工藝簡單,藥物的載藥量和包埋率高,且乳液的粒度可以控制等優點而被廣泛應用于生物活性成分的運載。納米乳是一種由油相、水相、表面活性劑及輔助材料組成,具有熱穩定的多組分散體系,粒徑一般不大于200 nm。姜黃素溶解于PEG600油相中,與聚氧乙烯蓖麻油以體積比2∶1乳化,在37℃條件下該納米乳可穩定儲存60 d[34]。Lee等將姜黃素溶解于油酸乙酯中,吐溫80和卵磷脂為表面活性劑,制備姜黃素納米乳[35]。研究表明,當去離子水、油酸乙酯和表面活性劑(卵磷脂∶吐溫80=1∶3)的質量比為25∶1∶4時,經高壓均質乳化,在2個月的貯存內乳液粒徑維持在(71.80±2.45)nm,沒有明顯變化。
1.5 姜黃素包合物 包合物是將一種生物活性成分部分或全部包在分子晶體的空腔中,形成獨特形式的絡合物。姜黃素和卵磷脂形成包合物后提高了姜黃素生物利用率和溶解度,使姜黃素的濃度提高了3~4倍。由于環糊精及其衍生物具有獨特的分子化學結構,能夠有效增加藥物溶解性,適用于改善難溶性藥物及中草藥活性成分的不穩定性、揮發性和刺激性等缺陷[36]。Yallapu等在制備姜黃素包合物時,以β-環糊精作為壁材,隨著姜黃素和β-環糊精的物料比(5%、10%、20%和30%)的增加,可以提高姜黃素包合物的產率[37]。研究顯示,利用環糊精的疏水性內腔運載姜黃素時,使姜黃素的溶解度提高了190~202倍,同時也提高了姜黃素的抗炎效果。當環糊精經葉酸和PEG修飾后,使姜黃素的溶解度提高了3 200倍,并使姜黃素在pH 6.50和pH 7.20條件下的穩定性提高了10~45倍[36]。
隨著人們對食品安全的日益關注,集著色、防腐與保健為一體的無毒副作用的姜黃素必將具有更廣闊的開發與應用前景。最新頒布的《食品添加劑使用標準》(GB2760-2014)規定,可可制品、巧克力和巧克力制品以及糖果,冷凍飲品,裝飾糖果、頂飾和甜汁,方便米面制品,面糊、裹粉、煎炸粉,調味糖漿,碳酸飲料,復合調味料,果凍中姜黃素的最大使用量分別為 0.01、0.15、0.70、0.30、0.50、0.50、0.50、0.01、0.10、0.01 g/kg,熟制堅果與籽類,糧食制品餡料,膨化食品中可按生產需要適量使用[38]。目前,姜黃素在國內外作為調味品和色素廣泛應用于食品工業中。當前我國已開發出水溶性和油溶性姜黃素產品,通過多種復配調配出不同顏色的姜黃素,已廣泛應用于面食、烘焙食品、果蔬汁、果酒、糖果、脫水干制品、糕點、罐頭、果汁及烹飪菜肴,作為復合調味品應用于雞精調味料、辣椒調味料、膨化調味料、醬油調味料、方便面及面膨化制品、方便食品調味料、火鍋調味醬、牛肉干等制品中[39-41]。在日本,姜黃素用于米糠腌制蘿卜咸菜、維也納香腸等。
隨著科技的不斷創新和人類認知程度的不斷深入,利用新資源,開發新的保健食品以滿足人們追求高質量飲食的需要,將是21世紀功能食品市場現狀及發展趨勢。由于姜黃是藥食同源植物,符合人們的健康需求,具有很好的市場前景。近年來,對姜黃素遞送系統的研究取得了較大的進展,劑型的改造可以有效地提高姜黃素在人體內的溶解度和穩定性,極大地提高了姜黃素體內生物利用率。隨著對其生理及藥理活性的不斷深入了解,必將使姜黃素在功能食品領域占有一席之地。
但是開發姜黃素的新型制劑仍然面臨一些問題。主要是這些制劑在動物和人體內的研究還不夠完善,同時姜黃素新型制劑的安全性問題還有待深入研究。總體來說,新型遞送體系在提高姜黃素生物利用率的探索還處于初級階段,需要進一步對體內的代謝動力學進行研究。
[1]BABAEIE,SADEGHIZADEH M,HASSANZM,et al.Dendrosomal curcumin significantly suppresses cancer cell proliferation in vitro and in vivo[J].Int Immunopharmacol,2012,12(1):226-234.
[2]BALWANT R,JASDEEP K,MARIA C.Anti-oxidation actions of curcumin in two forms of bed rest:Oxidative stress serum and salivary markers[J].Asian Pacific JTropi,2010,3(8):651-654.
[3]NAIR H B,SUNGB,YADAV V R,et al.Delivery of anti-inflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer[J].Biochem pharmacol,2010,80(12):1833-1843.
[4]ANNELYSE D,ROMAIN B,SYLVIE D,et al.Chemopreventive and therapeutic effects of curcumin[J].Cancer lett,2005,223(2):181-190.
[5]ANAND P,KUNNUMAKKARA A B,NEWMAN R A,et al.Bioavailability of curcumin:Problems and promises[J].Mol Pharmaceutics,2007,4(6):807-818.
[6]楊文杰,榮容,張偉,等.姜黃素制劑的研究進展[J].中國藥師,2010,13(4):565-567.
[7]馮為,胡林峰.姜黃素的研究進展及其抗腫瘤作用概況[J].中國現代藥物應用,2011,5(11):117-118.
[8]SUN M,SU X,DING B,et al.Advance in nanotechnology-based delivery systems for curcumin[J].Nanomedicine,2012,7(7):1085-1100.
[9]YALLAPUMM,JAGGIM,CHAUHANSC.Curcumin nanoformulations:A future nanomedicine for cancer[J].Drug discovery today,2012,17(1/2):71-80.
[10] NAKSURIYA O,OKONOGI S,SCHIFFELERS R M,et al.Curcumin nanoformulations:A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment[J].Biomaterials,2014,35(10):3365-3383.
[11]SALEM M,ROHANI S,GILLIESE R.Curcumin,a promising anti-cancer therapeutic:A review of its chemical properties,bioactivity and approaches to cancer cell delivery[J].Rsc Advances,2014,4(21):10815-10829.
[12] SOOD S,JAIN K,GOWTHAMARAJAN K.Optimization of curcumin nanoemulsion for intranasal delivery using design of experiment and its toxicity assessment[J].Colloids and surfaces B-biointerfaces,2014,113:330-337.
[13]SINGH SP,SHARMA M,GUPTA P K.Enhancement of phototoxicity of curcumin in human oral cancer cells using silica nanoparticles as delivery vehicle[J].Lasers Med Sci,2014,29(2):645-652.
[14]SHUKLA P,MATHURV,KUMARA,et al.Nanoemulsion based concomitant delivery of curcumin and etoposide:Impact on cross talk between prostate cancer cells and osteoblast during metastasis[J].Journal of biomedical nanotechnology,2014,10(11):3381-3391.
[15]HELSON L.Curcumin(Diferuloylmethane)delivery methods:A review[J].Biofactors,2013,39(1):21-26.
[16]GURIA,GULSERENI,CORREDIGM.Utilization of solid lipid nanoparticles for enhanced delivery of curcumin in cocultures of Ht29-Mtx and Caco-2 cells[J].Food and function,2013,4(9):1410-1419.
[17]CHUAH L H,BILLA N,ROBERTS C J,et al.Curcumin-containing chitosan nanoparticles as a potential mucoadhesive delivery system to the colon[J].Pharmaceutical development and technology,2013,18(3):591-599.
[18]LIC,ZHANGY,SUTT,et al.Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin[J].International journal of nanomedicine,2012,7:5995-6002.
[19]DHULESS,PENFORNISP,FRAZIERT,et al.Curcumin-loaded gammacyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma[J].Nanomedicine-nanotechnology biology and medicine,2012,8(4):440-451.
[20]CHEN H L,WU J,SUN M,et al.N-trimethyl chitosan chloride-coated liposomes for the oral delivery of curcumin[J].Journal of liposome research,2012,22(2):100-109.
[21]BASNET P,HUSSAIN H,THO I,et al.Liposomal delivery system enhances anti-inflammatory properties of curcumin[J].Journal of pharmaceutical sciences,2012,101(2):598-609.
[22]ANITHA A,MAYA S,DEEPA N,et al.Curcumin-loaded N,O-carboxymethyl chitosan nanoparticles for cancer drug delivery[J].Journal of biomaterials science-polymer edition,2012,23(11):1381-1400.
[23]ALAM S,PANDA JJ,CHAUHAN V S.Novel dipeptide nanoparticles for effective curcumin delivery[J].International journal of nanomedicine,2012,7:4207-4222.
[24]AKHTARF,RIZVIM MA,KARSK.Oral delivery of curcumin bound to chitosan nanoparticles cured plasmodium yoelii infected mice[J].Biotechnology advances,2012,30(1):310-320.
[25]AHMEDK,LIY,MCCLEMENTSDJ,et al.Nanoemulsion-and emulsionbased delivery systems for curcumin:Encapsulation and release properties[J].Food chemistry,2012,132(2):799-807.
[26]ZHANG F,KOH GY,LIU Z J,et al.A novel solubility-enhanced curcumin formulation showing stability and maintenance of anti-cancer activity[J].JPharm Sci,2011,100(7):2778-2789.
[27]XIE X,TAO Q,ZOU Y,et al.PLGA nanoparticles improve the oral bioavailability of curcumin in rats:characterizations and mechanisms[J].J Agric Food Chem,2011,59(17):9280-9289.
[28]KUNDU P,MOHANTY C,SAHOO SK.Antiglioma activity of curcuminloaded lipid nanoparticles and its enhanced bioavailability in brain tissue for effective glioblastoma therapy[J].Acta biomater,2012,8(7):2670-2687.
[29]LIN Q P,GUO R P,XU X Y,et al.Preparation and quality evaluation of curcumin liposomes for injection[J].Chin J Nat Med,2007,5(3):207-210.
[30]TAKAHASHI M,UECHIS,TAKARA K,et al.Evaluation of an oral carrier system in rats:bioavailability and antioxidant properties of liposomeencapsulated curcumin[J].J Agric Food Chem,2009,57(19):9141-9146.
[31]LIFX,LIX L,LIB.Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin[J].J Magn Magn Mater,2011,323(22):2770-2775.
[32]SHAHANI K,PANYAM J.Highly loaded,sustained-release microparticles of curcumin for chemoprevention[J].J Pharm Sci,2011,100(7):2599-2609.
[33]FAN Z H,LIU H L,XIANGB.Study on preparation of sustained-release microcapsules for curcumin[J].Chin Tradit Pat Med,2007,29(9):1302-1304.
[34]ZHONGF L,CHIU M,WANGJ,et al.Enhancement of curcumin oral absorption and pharmacokinetics of curcuminoids and curcumin metabolites in mice[J].Cancer chemother pharmacol,2012,69(3):679-689.
[35]LEE M H,LINH Y,CHEN H C,et al.Ultrasound mediates the release of curcumin from microemulsions[J].Langmuir,2008,24(5):1707-1713.
[36]李明.基于乳清蛋白運載和乳化作用提高姜黃素生物利用率的研究[D].哈爾濱:哈爾濱工業大學,2014.
[37]YALLAPU M M,JAGGI M,CHAUHAN S C.β-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells[J].Colloids Surf B,2010,79(1):113-125.
[38]中華人民共和國衛生部.食品安全國家標準食品添加劑使用標準:GB 2760-2014[S].北京:中國標準出版社,2011.
[39]張保軍,李春林.天然姜黃素及其在果蔬飲料中的應用[J].飲料工業,2002,6(5):38-40.
[40]張保軍,張衛.姜黃素的生理功能及其在方便面中的應用[J].中國食品添加劑,2001(4):37-39.
[41]牛生洋,郝峰鴿,許秋亞.姜黃素的提取及應用研究進展[J].河南科技學院學報,2008,36(4):58-61.