999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

腫瘤干細(xì)胞和上皮-間質(zhì)轉(zhuǎn)化之間的關(guān)系及其在腫瘤侵襲轉(zhuǎn)移中的作用

2015-12-10 09:50:37艾軍華綜述審校
醫(yī)學(xué)綜述 2015年12期
關(guān)鍵詞:特征

艾軍華(綜述),時(shí) 軍(審校)

(1.南昌大學(xué)第一附屬醫(yī)院普外科,南昌 330006; 2.武警8710部隊(duì)醫(yī)院外科,福建 莆田 351133)

?

腫瘤干細(xì)胞和上皮-間質(zhì)轉(zhuǎn)化之間的關(guān)系及其在腫瘤侵襲轉(zhuǎn)移中的作用

艾軍華1,2(綜述),時(shí) 軍1※(審校)

(1.南昌大學(xué)第一附屬醫(yī)院普外科,南昌 330006; 2.武警8710部隊(duì)醫(yī)院外科,福建 莆田 351133)

腫瘤干細(xì)胞(CSCs)是腫瘤中能通過分化成異源的癌細(xì)胞系而具有自我更新并保持腫瘤啟動(dòng)能力的細(xì)胞。近年來研究表明,CSCs是腫瘤治療后復(fù)發(fā)轉(zhuǎn)移的起源細(xì)胞。上皮-間質(zhì)轉(zhuǎn)化(EMT)可產(chǎn)生與CSCs分子特征相同的細(xì)胞,而且EMT與腫瘤侵襲轉(zhuǎn)移有關(guān),是開啟早期腫瘤進(jìn)入侵襲性惡性表型的關(guān)鍵過程。因此,開發(fā)阻止腫瘤細(xì)胞發(fā)生EMT的治療策略,將不僅可從源頭上消滅腫瘤復(fù)發(fā)的“種子”,還可抑制早期腫瘤進(jìn)展為侵襲性表型的過程,從而達(dá)到有效防治惡性腫瘤術(shù)后復(fù)發(fā)的目的。

上皮-間質(zhì)轉(zhuǎn)化;腫瘤干細(xì)胞樣細(xì)胞;腫瘤啟動(dòng)細(xì)胞;藥物抗性

上皮-間質(zhì)轉(zhuǎn)化(epithelial-to-mesenchymal transition, EMT)作為胚胎發(fā)育的特征首先被認(rèn)識(shí)。研究表明,EMT參與早期腫瘤進(jìn)展為侵襲性惡性腫瘤的過程[1],而且EMT能使腫瘤細(xì)胞獲得浸潤周圍組織的能力,并使腫瘤細(xì)胞轉(zhuǎn)移到遠(yuǎn)處器官[2]。大部分癌癥的進(jìn)展與間葉表型的獲得相關(guān),并伴有上皮標(biāo)志物表達(dá)的喪失和間葉標(biāo)志物的上調(diào),從而導(dǎo)致細(xì)胞移動(dòng)和侵襲能力增強(qiáng)[3]。腫瘤的發(fā)生和復(fù)發(fā)被認(rèn)為與腫瘤干細(xì)胞(cancer stem cells, CSCs)或腫瘤啟動(dòng)細(xì)胞的生物學(xué)特性密切相關(guān)[4-5],而且由不同因子誘導(dǎo)、具有EMT表型的細(xì)胞是腫瘤干細(xì)胞樣細(xì)胞的豐富來源[6]。腫瘤細(xì)胞中EMT的誘導(dǎo)不僅促進(jìn)腫瘤細(xì)胞侵襲和轉(zhuǎn)移而且有助于藥物抗性[7-9]。因此闡明這些細(xì)胞的分子特征將有助于開發(fā)新的、完全消滅腫瘤的新方法。現(xiàn)對CSCs和EMT之間的關(guān)系及其在腫瘤侵襲轉(zhuǎn)移中的作用進(jìn)行綜述。

1 EMT在腫瘤進(jìn)展和轉(zhuǎn)移中的作用

EMT是指上皮細(xì)胞在特定的情況下向間質(zhì)細(xì)胞轉(zhuǎn)分化的現(xiàn)象[10],EMT過程對癌癥進(jìn)展和轉(zhuǎn)移是非常重要的。實(shí)體腫瘤細(xì)胞通過空間和時(shí)間上的EMT而進(jìn)展為更具侵襲性的表型。具有間葉表型的轉(zhuǎn)移瘤細(xì)胞經(jīng)過相反的過程,即轉(zhuǎn)移部位的間葉-上皮轉(zhuǎn)化(mesenchymal-to-epithelial transition, MET)后獲得對應(yīng)的原發(fā)瘤病理學(xué)特征,MET過程是關(guān)鍵的一步,通過MET轉(zhuǎn)移瘤細(xì)胞在第二部位生長。研究表明,原發(fā)性結(jié)腸癌及其轉(zhuǎn)移癌顯示出一種混合的上皮-間葉表型[11]。在腫瘤中心的細(xì)胞仍表達(dá)上皮性鈣黏蛋白(E-cadherin)和胞質(zhì)β-聯(lián)蛋白(β-catenin),而在周圍的腫瘤細(xì)胞顯示出表面E-cadherin喪失和波形蛋白(Vimentin)上調(diào)及核β-catenin 表達(dá),即典型的EMT表型特征。Chaffer等[12]用膀胱癌非雄激素依賴型前列腺癌(TSU-prl, T24)系列細(xì)胞株篩選轉(zhuǎn)移能力增強(qiáng)的細(xì)胞,發(fā)現(xiàn)轉(zhuǎn)移能力更強(qiáng)的細(xì)胞亞群具有EMT特征。在前列腺癌,Yates等[13]用DU145)或PC3細(xì)胞與肝細(xì)胞共培養(yǎng),發(fā)現(xiàn)在共培養(yǎng)條件下緊密連接處周圍的DU145和PC3細(xì)胞的E-cadherin表達(dá)上調(diào),而且這些細(xì)胞系顯示出細(xì)胞-細(xì)胞間黏附連接如E-cadherin分子標(biāo)志物的表達(dá)與上皮樣形態(tài)是相同的。這些結(jié)果表明,細(xì)胞中EMT表型改變有助于腫瘤侵襲。

2 CSCs的發(fā)現(xiàn)

CSCs是腫瘤中具有自我更新并分化成一個(gè)完整腫瘤所必需的所有異源腫瘤細(xì)胞系的細(xì)胞。CSCs的存在首先在白血病細(xì)胞中分離并被證實(shí)[14]。他們發(fā)現(xiàn)僅有一小部分具有CD34+CD38-細(xì)胞表面標(biāo)志物的白血病細(xì)胞亞群移植到嚴(yán)重聯(lián)合免疫缺陷的小鼠身上,才能導(dǎo)致癌癥擴(kuò)散和白血病細(xì)胞形態(tài)與原發(fā)灶中的癌細(xì)胞形態(tài)相似。此后CSCs在實(shí)體腫瘤如乳腺癌、結(jié)腸癌、腦腫瘤和前列腺癌中被鑒定出來。Ricci-Vitiani 等[15]發(fā)現(xiàn),105個(gè)CD133-結(jié)腸癌細(xì)胞并不能誘導(dǎo)腫瘤形成,而在基質(zhì)膠中注入106個(gè)結(jié)腸癌細(xì)胞懸液5周后可產(chǎn)生肉眼可見的腫瘤,而注入3000個(gè)CD133+結(jié)腸癌細(xì)胞4周后即可誘導(dǎo)生成肉眼可見的腫瘤。O′Brien等[16]也發(fā)現(xiàn),262個(gè)CD133+結(jié)腸癌細(xì)胞能誘導(dǎo)嚴(yán)重聯(lián)合免疫缺陷小鼠腫瘤形成。這些結(jié)果表明,結(jié)腸癌啟動(dòng)細(xì)胞是CD133+結(jié)腸癌細(xì)胞。用中樞干細(xì)胞表面標(biāo)志物CD133分離到了大腦腫瘤干細(xì)胞,從侵襲性很強(qiáng)的髓母細(xì)胞瘤的臨床標(biāo)本中分離的細(xì)胞亞群具有增強(qiáng)的自我更新能力[17-18]。這些CD133+細(xì)胞在培養(yǎng)基中能分化成形態(tài)類似于癌癥患者中的腫瘤細(xì)胞。他們還發(fā)現(xiàn)在非肥胖糖尿病、嚴(yán)重聯(lián)合免疫缺陷小鼠大腦中注入100個(gè) CD133+細(xì)胞可誘導(dǎo)腫瘤發(fā)生。在人前列腺癌中,Patrawala等[19]從用CD44表面標(biāo)志物建立的異種移植物中鑒定出了腫瘤啟動(dòng)細(xì)胞,并用CD44+α2β1+篩選充實(shí)了這些細(xì)胞。研究表明,多潛能標(biāo)志物如Oct4、Sox2、Nanog、lin28、Klf4和c-myc 的共表達(dá)能重新編程體細(xì)胞成為多潛能的胚胎干細(xì)胞樣細(xì)胞,說明干細(xì)胞相關(guān)的因子和癌基因的聯(lián)合表達(dá)也可誘導(dǎo)這些細(xì)胞呈未分化狀態(tài)[20]。Jeter等[21]發(fā)現(xiàn),來源于人、具有上皮表型的前列腺細(xì)胞可被人端粒酶逆轉(zhuǎn)錄酶永生化并且表達(dá)胚胎干細(xì)胞標(biāo)志物如Oct4、Nanog和Sox2,這與分化差的腫瘤中Oct4、Sox2、Nanog和c-myc過表達(dá)的結(jié)果是一致的,而Nanog、Sox2和Oct4在癌癥進(jìn)展中發(fā)揮重要作用[22-24]。

3 EMT表型細(xì)胞是CSCs的起源細(xì)胞

大部分腫瘤向惡性進(jìn)展與上皮分化的喪失和以增強(qiáng)的細(xì)胞移動(dòng)和侵襲為特征的間葉表型的獲得相關(guān),并促進(jìn)腫瘤轉(zhuǎn)移和耐藥[9]。研究表明,EMT不僅在腫瘤轉(zhuǎn)移而且在腫瘤復(fù)發(fā)中發(fā)揮重要作用,這與CSCs的生物學(xué)特性密切相關(guān)[25-31]。Morel等[32]發(fā)現(xiàn),CD44+CD24-/low干細(xì)胞樣細(xì)胞特征能通過激活膜受體酪氨酸蛋白激酶Ras/絲裂原活化蛋白激酶(Ras/mitogen-activated protein kinase, Ras/MAPK)信號(hào)通路從一種非腫瘤性乳腺上皮細(xì)胞CD44lowCD24+細(xì)胞產(chǎn)生。他們還發(fā)現(xiàn)CD44+CD24-/low細(xì)胞顯示出E-cadherin表達(dá)喪失和Vimentin表達(dá)獲得為特征的EMT表型,因而假設(shè)EMT的誘導(dǎo)可能與CD44lowCD24+細(xì)胞轉(zhuǎn)化為CD44+CD24-/low干細(xì)胞樣細(xì)胞有關(guān)。用轉(zhuǎn)化生長因子β處理CD24+細(xì)胞,處理后8 d出現(xiàn)CD24-細(xì)胞,伴隨以E-cadherin喪失和Vimentin表達(dá)為特征的間葉表型細(xì)胞增多。Mani等[33]進(jìn)一步研究表明,由twist或snail誘導(dǎo)非腫瘤、永生化的人乳腺上皮細(xì)胞成EMT表型將導(dǎo)致上皮表型喪失并獲得間葉表型,同時(shí)獲得CD44high/CD24low表達(dá)模式并增加微球體形成能力和腫瘤啟動(dòng)能力。但是,從正常和惡性人乳腺細(xì)胞分離出來的CD44high/CD24low干細(xì)胞樣細(xì)胞顯示出間葉形態(tài)并表達(dá)間葉標(biāo)志物如Vimentin和纖維連接蛋白。Santisteban等[34]觀察到由一種上皮乳腺癌產(chǎn)生的免疫應(yīng)答誘導(dǎo)的EMT可引起體內(nèi)腫瘤過度生長。而且間葉性腫瘤細(xì)胞有CD44+CD24-/low表型,該表型能重建上皮腫瘤并增加耐藥性,這些與乳腺CSCs的特征一致。Gupta等[35]也發(fā)現(xiàn)由短發(fā)夾RNA(short hairpin RNA, shRNA)介導(dǎo)的E-cadherin敲除誘導(dǎo)轉(zhuǎn)化的HMLER。乳腺癌細(xì)胞發(fā)生EMT后CD44high/CD24low細(xì)胞數(shù)量增加,并且與它們的上皮表型細(xì)胞相比這些細(xì)胞顯示出了增強(qiáng)100倍的微球體形成能力。這些報(bào)道均提示EMT能誘導(dǎo)產(chǎn)生干細(xì)胞樣細(xì)胞,但調(diào)控該過程的分子機(jī)制還不完全清楚。

4 miRNAs以干細(xì)胞特征聯(lián)系EMT

已知微RNA(microRNAs,miRNAs)參與胚胎發(fā)育和癌癥進(jìn)展[36],而癌癥進(jìn)展與上皮腫瘤細(xì)胞EMT有關(guān)。miRNAs是一類小的非編碼RNA分子,通過與靶基因的3′-非翻譯區(qū)(3′untranslated Regions, 3′UTR)序列相互作用下調(diào)基因表達(dá),從而導(dǎo)致翻譯抑制或mRNAs降解[37]。研究表明,miR-200 家族成員能通過結(jié)合鋅指E-盒結(jié)合同源異形盒(zinc-finger E-box binding homeobox 1, ZEB1)、鋅指E-盒結(jié)合同源異形盒(zinc-finger E-box binding homeobox 2, ZEB2) mRNA的3′UTR序列調(diào)控ZEB1和ZEB2的表達(dá)進(jìn)而調(diào)控EMT過程[38]。ZEB1和ZEB2能通過直接結(jié)合miR-200基因中E-盒的結(jié)合位點(diǎn)抑制miR-200家族的表達(dá),從而在EMT過程中建立一個(gè)調(diào)控ZEB1、ZEB2和miR-200家族的雙向負(fù)反饋環(huán)。miR-200也可通過調(diào)控B細(xì)胞特異性白血病病毒插入位點(diǎn)(B-cell-specific moloney leukemia virus insert sitel, Bmil)、Notch1和Lin28B的表達(dá)與干細(xì)胞樣細(xì)胞特征有關(guān)[39]。Wellner等[40]發(fā)現(xiàn)EMT活化因子ZEB1在低分化的人胰腺癌中高表達(dá),并且用表達(dá)ZEB1的Panc1細(xì)胞原位注射至胰腺內(nèi)導(dǎo)致裸鼠胰腺形成一個(gè)大的原發(fā)腫瘤并侵犯胃、脾臟、小腸和大腸,并轉(zhuǎn)移到淋巴結(jié)和肝臟。而用敲除了ZEB1的細(xì)胞注射引起一個(gè)更小的原發(fā)腫瘤,且該原發(fā)瘤沒有局部浸潤、淋巴結(jié)轉(zhuǎn)移和遠(yuǎn)處轉(zhuǎn)移。此外ZEB1不僅抑制miR-200c表達(dá)而且也通過抑制miR-203和miR-183表達(dá)而調(diào)控干細(xì)胞性相關(guān)的因子如Bmil、Sox2和Klf4表達(dá)。這些報(bào)道均表明miR-200 家族與EMT調(diào)控、CSCs和干細(xì)胞樣細(xì)胞特征的維持有直接關(guān)系。

Iliopoulos等[41]發(fā)現(xiàn),蛋白激酶(Akt)的3個(gè)異構(gòu)體通過調(diào)控miR-200家族的表達(dá)誘導(dǎo)EMT發(fā)揮相反的作用。同時(shí),在小鼠乳腺腫瘤病毒(mouse mammary tumor virus, MMTV)-cErbB2/Akt1-/-小鼠生長的腫瘤顯示出miR-200下調(diào)和侵襲能力增加。因此,是Akt-1/Akt2比例而不是Akt的總活性能通過調(diào)控miR-200家族的表達(dá)而控制EMT的誘導(dǎo)及維持腫瘤細(xì)胞的干細(xì)胞性。他們還發(fā)現(xiàn)miR-200家族在CSCs誘導(dǎo)過程中也被抑制,但在攜帶可誘導(dǎo)的Src致癌基因的MCF-10A 模型中不轉(zhuǎn)化,并且抑制miR-200b顯示CSCs形成能力增強(qiáng),且miR-200b直接靶向zeste 12抑制因子(suppressor of zeste 12, Suz12)[42]。

研究發(fā)現(xiàn)由血小板源性生長因子-D過表達(dá)誘導(dǎo)發(fā)生EMT的PC3細(xì)胞具有自我更新和腫瘤生成能力等干細(xì)胞特征,這與干細(xì)胞標(biāo)志物如Notch-1、Sox2、Nanog、Oct4 和Lin28B表達(dá)增強(qiáng)是一致的[38-39,43]。這些EMT表型細(xì)胞也顯示miR-200 或let-7家族表達(dá)下調(diào)。此外由轉(zhuǎn)染miR-200前體迫使miR-200再表達(dá)誘導(dǎo)的EMT逆轉(zhuǎn)明顯抑制集落和前列腺生成能力,這與Notch-1和Lin28B表達(dá)下調(diào)有關(guān)。而敲除Lin28B明顯增強(qiáng)let-7表達(dá)并減弱自我更新能力。在發(fā)生EMT的ARCaPM細(xì)胞中miR-200c表達(dá)被抑制,并且miR-200c 再表達(dá)逆轉(zhuǎn)EMT表型至與Notch-1表達(dá)下調(diào)、ARCaRM細(xì)胞自我更新能力相關(guān)的MET表型[39]。這些報(bào)道均提示miRNAs尤其是miR-200家族成員把EMT表型與干細(xì)胞特性聯(lián)系在一起,見表1。

5 展 望

傳統(tǒng)的癌癥治療主要靶向分化的腫瘤細(xì)胞,但是在相當(dāng)一部分癌癥患者中,在規(guī)范治療后癌細(xì)胞獲得耐藥表型,導(dǎo)致無法根治的腫瘤復(fù)發(fā)和遠(yuǎn)處轉(zhuǎn)移。腫瘤復(fù)發(fā)被認(rèn)為與CSCs或癌啟動(dòng)細(xì)胞的生物學(xué)特性密切相關(guān)[4]。越來越多的證據(jù)表明,腫瘤侵襲特性的獲得與腫瘤細(xì)胞發(fā)生EMT有關(guān),這允許

EMT:上皮-間質(zhì)轉(zhuǎn)化;CSCs:腫瘤干細(xì)胞;miRNAs:微RNAs;miR-200a:微RNA-200a;Akt-1:蛋白激酶B1;miR-200:微RNA-200;miR-200b:微RNA-200b;Notch1:Notch受體1;Suz12:zeste 12抑制因子;miR-200c:微miRNA-200c;miR-183:微RNA-183;ZEB1:鋅指E-盒結(jié)合同源異形盒;ZEB2:鋅指E-盒結(jié)合同源異形盒;Bmil:B細(xì)胞特異性白血病病毒插入位點(diǎn);Sox2:Sry相關(guān)高遷移族蛋白盒2;KLF4:Krüppel樣因子4

腫瘤細(xì)胞打破組織架構(gòu)強(qiáng)加的結(jié)構(gòu)限制[44]。EMT誘導(dǎo)的干細(xì)胞樣細(xì)胞或CSCs為癌癥復(fù)發(fā)提供種子,并且已知這些細(xì)胞高度耐藥[36]。因此,鑒定哪些因子可能誘導(dǎo)EMT并闡明這些因子在癌癥進(jìn)展中的分子機(jī)制很重要,這強(qiáng)調(diào)了這些因子對開發(fā)新的完全治愈癌癥的靶向治療的重要性。闡明CSCs、腫瘤干細(xì)胞樣細(xì)胞和EMT表型細(xì)胞的分子機(jī)制及生物學(xué)特性將有助于篩選出能選擇性殺死這些細(xì)胞以消除腫瘤復(fù)發(fā)的潛在藥物。

[1] Thiery JP.Epithelial-mesenchymal transitions in tumour progression[J].Nat Rev Cancer,2002,2(6):442-454.

[2] Madka V,Rao CV.Cancer stem cell markers as potential targets for epithelial cancers[J].Indian J Exp Biol,2011,49(11):826-835.

[3] Hollier BG,Evans K,Mani SA.The epithelial-to-mesenchymal transition and cancer stem cells:A coalition against cancer therapies[J].J Mammary Gland Biol Neoplasia,2009,14(1):29-43.

[4] Kasper S.Dentification,characterization,and biological relevance of prostate cancer stem cells from clinical specimens[J].Urol Oncol,2009,27(3):301-303.

[5] Marian CO,Shay JW.Prostate tumor-initiating cells:a new target for telomerase inhibition therapy? [J].Biochim Biophys Acta,2009,1792(4):289-296.

[6] Peter ME.Let-7 and miR-200 microRNAs:Guardians against pluripotency and cancer progression[J].Cell Cycle,2009,8(6):843-852.

[7] Sarkar FH,Li Y,Wang Z,etal.The role of nutraceuticals in the regulation of Wnt and Hedgehog signaling in cancer[J].Cancer Metastasis Rev,2010,29(3):383-394.

[8] Singh A,Settleman J.EMT,cancer stem cells and drug resistance:An emerging axis of evil in the war on cancer[J].Oncogene,2010,29(34):4741-4751.

[9] Wang Z,Li Y,Ahmad A,etal.Targeting miRNAs involved in cancer stem cell and EMT regulation:An emerging concept in overcoming drug resistance[J].Drug Resist Updat,2010,13(4/5):109-118.

[10] Oishi N,Wang XW.Novel therapeutic strategies for targeting liver cancer stem cells[J].Int J Sci,2011,7(5):517-535.

[11] Brabletz T,Jung A, Reu S,etal.Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment[J].Proc Natl Acad Sci U S A,2001,98(18):10356-10361.

[12] Chaffer CL,Brennan JP,Slavin JL,etal.Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis:Role of fibroblast growth factor receptor-2[J].Cancer Res,2006,66(23):11271-

11278.

[13] Yates CC,Shepard CR,Stolz DB,etal.Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin[J].Br J Cancer,2007,96(8):1246-1252.

[14] Lapidot T,Sirard C,Vormoor J,etal.A cell initiating human acute myeloid leukaemia after transplantation into SCID mice[J].Nature,1994,367(6464):645-648.

[15] Ricci-Vitiani L,Lombardi DG,Pilozzi E,etal.Identification and expansion of human colon-cancer-initiating cells[J].Nature,2007,445(7123):111-115.

[16] O′Brien CA,Pollett A,Gallinger S,etal.A human colon cancer cell capable of initiating tumour growth in immunodeficient mice[J].Nature,2007,445(7123):106-110.

[17] Singh SK,Hawkins C,Clarke ID,etal.Identification of human brain tumour initiating cells[J].Nature,2004,432(7015):396-401.

[18] Singh SK,Clarke ID,Terasaki M,etal.Identification of a cancer stem cell in human brain tumors[J].Cancer Res, 2003,63(18):5821-5828.

[19] Patrawala L,Calhoun T,Schneider-Broussard R,etal.Highly purified CD44+prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells[J].Oncogene,2006,25(12):1696-1708.

[20] Yu J,Hu K,Smuga-Otto K,etal.Human induced pluripotent stem cells free of vector and transgene sequences[J].Science,2009,324(5928):797-801.

[21] Jeter CR,Badeaux M,Choy G,etal.Functional evidence that the self-renewal gene NANOG regulates human tumor development[J].Stem Cells,2009,27(5):993-1005.

[22] Lu Y,Futtner C,Rock JR,etal.Evidence that SOX2 overexpression is oncogenic in the lung[J].PLoS One,2010,5(6):e11022.

[23] Sholl LM,Barletta JA,Yeap BY,etal.Sox2 protein expression is an independent poor prognostic indicator in stage I lung adenocarcinoma[J].Am J Surg Pathol,2010,34(8):1193-1198.

[24] Sotomayor P,Godoy A,Smith GJ,etal.Oct4A is expressed by a subpopulation of prostate neuroendocrine cells[J].Prostate,2009,69(4):401-410.

[25] Blick T,Hugo H,Widodo E,etal.Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24(lo/-) stem cell phenotype in human breast cancer[J].J Mammary Gland Biol Neoplasia,2010,15(2):235-252.

[26] Caja L,Bertran E,Campbell J,etal.The transforming growth factor-beta (TGF-beta) mediates acquisition of a mesenchymal stem cell-like phenotype in human liver cells[J].J Cell Physiol,2011,226(5):1214-1223.

[27] Fuxe J,Vincent T,Garcia de Herreros A.Transcriptional crosstalk between TGF-beta and stem cell pathways in tumor cell invasion:Role of EMT promoting Smad complexes[J].Cell Cycle,2010,9(12):2363-2374.

[28] Martin A,Cano A.Tumorigenesis:Twist1 links EMT to self-rene-wal[J].Nat Cell Biol,2010,12(10):924-925.

[29] Phinney DG.Twist,Epithelial-to-Mesenchymal Transition,and Stem Cells[J].Stem Cells,2011,29(1):3-4.

[30] Yang MH,Hsu DS,Wang HW,etal.Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition[J].Nat Cell Biol,2010,12(10):982-992.

[31] Zavadil J.A spotlight on regulatory networks connecting EMT and cancer stem cells[J].Cell Cycle,2010,9(15):2927.

[32] Morel AP,Lievre M,Thomas C,etal.Generation of breast cancer stem cells through epithelial-mesenchymal transition[J].PLoS One,2008,3(8):e2888.

[33] Mani SA,Guo W,Liao MJ,etal.The epithelial-mesenchymal transition generates cells with properties of stem cells[J].Cell,2008,133(4):704-715.

[34] Santisteban M,Reiman JM,Asiedu MK,etal.Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells[J].Cancer Res,2009,69(7):2887-2895.

[35] Gupta PB,Onder TT,Jiang G,etal.Identification of selective inhibitors of cancer stem cells by high-throughput screening[J].Cell,2009,138(4):645-659.

[36] Sarkar FH,Li Y,Wang Z,etal.Implication of microRNAs in drug resistance for designing novel cancer therapy[J].Drug Resist Updat,2010,13(3):57-66.

[37] Shimono Y,Zabala M,Cho RW,etal.Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells[J].Cell,2009,138(3):592-603.

[38] Kong D,Li Y,Wang Z,etal.miR-200 Regulates PDGF-D-mediated epithelial-mesenchymal transition,adhesion,and invasion of prostate cancer cells[J].Stem Cells,2009,27(8):1712-1721.

[39] Kong D,Banerjee S,Ahmad A,etal.Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells[J].PLoS One,2010,5(8):e12445.

[40] Wellner U,Schubert J,Burk UC,etal.The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs[J].Nat Cell Biol,2009,11(12):1487-1495.

[41] Iliopoulos D,Polytarchou C,Hatziapostolou M,etal.MicroRNAs differentially regulated by Akt isoforms control EMT and stem cell renewal in cancer cells[J].Sci Signal,2009,2(92):ra62.

[42] Iliopoulos D,Lindahl-Allen M,Polytarchou C,etal.Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells[J].Mol.Cell,2010,39(5):761-772.

[43] Kong D,Wang Z,Sarkar SH,etal.Platelet-derived growth factor-D overexpression contributes to epithelial mesenchymal transition of PC3 prostate cancer cells[J].Stem Cells,2008,26(6):1425-

1435.

[44] Hu Y,Fu L.Targeting cancer stem cells:a new therapy to cure cancer patients[J].Am J Cancer Res,2012,2(3):340-356.

Study on the Correlation between Cancer Stem Cells and Epithelial-to-Mesenchymal Transition and Its Effect on the Invasion and Metastasis of Tumors

AIJun-hua1,2,SHIJun1.

(1.DepartmentofGeneralSurgery,TheFirstAffiliatedHospitalofNanchangUniverstiy,Nanchang330006,China; 2.DepartmentofSurgery,No.8710HospitalofChinesePeople′sArmedPoliceForce,Putian351113,China)

Cancer stem cells(CSCs) are cells that possess the capacity of self-renewal and maintain the capacity of tumor-initiating through differentiation into the heterogeneous lineages of cancer cells in the tumor.Recent studies have shown that CSCs are the original cells of tumor recurrence and metastasis after therapy.Epithelial-to-mesenchymal transition(EMT) could produce cells with similar molecular characteristics as CSCs,besides,EMT is correlated with the invasion and metastasis of tumors,and is the critical process that boots early tumors to evolve into the invasive tumors.Therefore,exploiting the therapeautic strategies to stop tumor cells from developing into EMT will not only extinguish the “seeds” of recurrence of tumors in the source but also inhibit the early tumors from evolving into invasive phenotype,so as to prevent and treat the recurrence of malignant tumors effectively.

Epithelial-to-mesenchymal transition; Cancer stem-like cells; Tumor-initiating cells; Drug resistance

R73-37

A

1006-2084(2015)12-2180-04

10.3969/j.issn.1006-2084.2015.12.025

2014-08-25

2014-12-06 編輯:相丹峰

猜你喜歡
特征
抓住特征巧觀察
離散型隨機(jī)變量的分布列與數(shù)字特征
具有兩個(gè)P’維非線性不可約特征標(biāo)的非可解群
月震特征及與地震的對比
如何表達(dá)“特征”
被k(2≤k≤16)整除的正整數(shù)的特征
不忠誠的四個(gè)特征
詈語的文化蘊(yùn)含與現(xiàn)代特征
新聞傳播(2018年11期)2018-08-29 08:15:24
抓住特征巧觀察
基于特征篩選的模型選擇
主站蜘蛛池模板: 亚洲九九视频| www.国产福利| 性网站在线观看| 2020久久国产综合精品swag| 2022国产无码在线| 日本成人精品视频| 婷婷色在线视频| 高清亚洲欧美在线看| 国产高清在线丝袜精品一区| 久久精品人人做人人综合试看| 国产菊爆视频在线观看| 国产欧美精品午夜在线播放| 色噜噜综合网| 国产成人亚洲无码淙合青草| 3p叠罗汉国产精品久久| av午夜福利一片免费看| 玖玖精品在线| 丁香亚洲综合五月天婷婷| 欧美日本在线播放| 欧美福利在线| 99久久99这里只有免费的精品| 亚洲欧美日本国产综合在线| www.91在线播放| 亚洲天堂视频在线播放| 日本精品视频| 日韩AV无码一区| 久久天天躁夜夜躁狠狠| 久久精品人妻中文系列| 国产视频自拍一区| 99在线观看国产| 久久99精品久久久久久不卡| 一级毛片中文字幕| 亚洲成aⅴ人片在线影院八| 国产人在线成免费视频| 国产人前露出系列视频| 欧美翘臀一区二区三区| 午夜成人在线视频| 亚洲一区二区三区香蕉| 2021国产精品自拍| 亚洲αv毛片| 中日无码在线观看| 亚洲日韩久久综合中文字幕| 亚洲无码视频图片| 免费看的一级毛片| 黄色网页在线播放| 国产主播福利在线观看| 国产精品亚欧美一区二区三区| 国产成人禁片在线观看| 国产一区二区三区在线精品专区| 美女一级免费毛片| 欧美亚洲国产精品久久蜜芽| 精品亚洲国产成人AV| 人妻丰满熟妇av五码区| 亚洲中文无码h在线观看| 国产女人在线观看| 亚洲Av综合日韩精品久久久| 亚洲欧美不卡视频| 午夜影院a级片| 国产色爱av资源综合区| 91成人免费观看| 欧美yw精品日本国产精品| 国产av无码日韩av无码网站| 精品久久香蕉国产线看观看gif | 无码国内精品人妻少妇蜜桃视频| 精品欧美一区二区三区久久久| 无码aaa视频| 欧美亚洲激情| 91精品最新国内在线播放| 91精品久久久久久无码人妻| 99热6这里只有精品| 美女内射视频WWW网站午夜 | 亚洲成人77777| 亚洲国产在一区二区三区| 色噜噜狠狠狠综合曰曰曰| 欧美一级高清免费a| 亚洲欧美日韩另类| 国产福利一区二区在线观看| 国产资源免费观看| 中文成人在线视频| 精品一区国产精品| 免费a级毛片视频| 午夜啪啪网|