趙記華 葉小群
·國家基金研究進展綜述·
HIFs維持腫瘤干細胞生物學特性及研究進展*
趙記華 葉小群
缺氧微環(huán)境是實體腫瘤的典型特征,被認為是導致腫瘤進展及預后差的獨立因素;作為腫瘤干細胞(cancer stem cells,CSCs)壁龕的關鍵組成部分,缺氧微環(huán)境對腫瘤干細胞在腫瘤中的演進以及抗凋亡能力起著重要的作用。缺氧誘導因子(hypoxia-inducible factors,HIFs)是腫瘤適應缺氧微環(huán)境的中心調節(jié)因子,能夠誘導腫瘤干細胞生物學行為的改變如抗凋亡、增強耐藥基因表達、促進腫瘤侵襲轉移等,從而加速腫瘤惡性轉變;同時HIFs也是維持腫瘤干細胞其干細胞特性的主要影響因素。本文對HIFs在維持腫瘤干細胞生物學特性的研究進展進行綜述。
HIFs CSCs 抗凋亡 侵襲性 生物學特性
Department of Respiratory Medicine,the SecondAffiliated Hospital of Nanchang University,Nanchang 330006,China
This work was supported by the National Natural Science Foundation of China(Grant No:81160027)and the Natural Science
Foundation of Jiangxi Province(Grant No:20114BAB205001)
缺氧作為腫瘤常見的生理現象,被認為是臨床上腫瘤進展、復發(fā)與轉移的重要影響因素。惡性腫瘤在生長過程中,由于腫瘤細胞增生過快,造成局部組織嚴重缺氧以及供能與耗能之間的不平衡,形成一個與腫瘤生存相關的特殊微環(huán)境,稱之為缺氧微環(huán)境。研究顯示,缺氧在腫瘤相關間質微環(huán)境和腫瘤干細胞微環(huán)境的形成及演進中發(fā)揮重要作用[1]。隨著干細胞的理論被引入腫瘤研究,腫瘤干細胞學說受到越來越多的關注,并在多種惡性腫瘤中都成功分離出腫瘤干細胞。根據CSC理論,腫瘤被認為是由一小部分不斷增殖、能夠自我更新和分化成異種腫瘤細胞的細胞發(fā)展而來。最近研究也為腫瘤干細胞的存在提供了確鑿的證據,認為腫瘤干細胞是腫瘤侵襲、轉移和復發(fā)等惡性演變的關鍵[2-3]。缺氧誘導因子(hypoxia-inducible factors,HIFs)家族作為調控缺氧應答的主要轉錄因子,對腫瘤發(fā)展、轉移、侵襲和維持腫瘤干細胞的生物學特性起著重要的作用。
人類許多實體瘤中都存在組織缺氧區(qū)域,而腫瘤細胞能夠適應此缺氧環(huán)境,其最關鍵的轉錄因子是缺氧誘導因子[4]。HIFs是維持氧穩(wěn)態(tài)的主要調節(jié)因子,介導生理性和病理性缺氧反應,作為一個異源二聚體,由氧調節(jié)的HIF-α亞基和持續(xù)表達的HIF-β
亞基組成。HIF-α又分為3個亞型:HIF-1α、HIF-2α和HIF-3α;HIF-1α和HIF-2α具有相似結構和作用,HIF-3α則通過與HIF-1α形成不活躍的二聚體,起到負調節(jié)的作用。HIF-1α與HIF-2α均含有N端和C端2個反式轉錄激活結構域(transactivation domain,TAD),TAD-N端介導異源二聚體的形成及其與DNA的結合,TAD-C端主要參與轉錄激活作用。常氧時,HIF-α的半衰期都非常短,其獨特的氧依賴降解區(qū)中有兩個特殊的脯氨酸殘基能夠被脯氨酸羥化酶(prolyl hydroxylase,PHD)識別并羥基化。羥基化的HIF-α與腫瘤抑制蛋白(von Hippel-Lindauprotein,pVHL)結合,pVHL復合體能夠富集E3泛素連接酶,介導26S蛋白酶體對HIF-α的降解作用。在缺氧條件下,氧依賴降解區(qū)的PHD活性受抑制,穩(wěn)定的HIF-α亞基與HIF-β亞基形成二聚體,由胞質穿到胞核,最后連接到缺氧反應元件(hypoxia responsive,HRE)上啟動靶基因轉錄[5-6]。
HIFs家族主要通過調控各自獨特的靶基因來啟動一系列適應缺氧的轉錄反應來驅動腫瘤演進[4]。HIFs調控腫瘤糖酵解途徑相關酶類,如乳酸脫氫酶A(LDHA)、丙酮酸脫氫酶1(PDK1)、葡萄糖轉運蛋白(GLUT1)等基因的表達,使腫瘤細胞在缺氧條件下能夠適應新的能量代謝方式,為腫瘤細胞提供能量[7]。腫瘤細胞中HIFs的活化還可以通過調節(jié)缺氧相關基因,如血管內皮生長因子(vascular endothelial growth factor,VEGF)、基質金屬蛋白酶(matrix metalloproteinases,MMPs)、趨化因子受體4(chemokine receptor4,CXCR4)等的表達,這些基因主要通過編碼抵抗凋亡和低氧損傷的蛋白,不僅促進腫瘤間質上皮轉化、腫瘤細胞增殖,還可抑制細胞凋亡、誘導腫瘤的放化療耐受性,從而維持腫瘤細胞生存,是腫瘤發(fā)生發(fā)展的重要因素[8-10]。
越來越多的證據表明,腫瘤并不是由均一的細胞群體組成,許多腫瘤中也存在與正常干細胞類似的細胞等級分類。絕大部分的腫瘤細胞分裂增殖能力有限,但存在極少量的特殊腫瘤細胞與干細胞相似,具有高度增殖與自我更新能力,以及多向分化的潛能,這些細胞被稱為腫瘤干細胞,被認為是腫瘤轉移、復發(fā)的根源[2]。隨后在許多人類的惡性腫瘤,包括肺、乳腺、腦、結腸、前列腺、胰腺等腫瘤中均發(fā)現類似細胞[11]。研究顯示腫瘤干細胞的形成與其生存的腫瘤干細胞壁龕密切相關。腫瘤干細胞壁龕是干細胞居留的一個微環(huán)境,影響著干細胞的增殖和分化,通過與干細胞之間的直接或間接作用影響干細胞的命運[4]。而缺氧是腫瘤干細胞壁龕的關鍵組成部分,為腫瘤干細胞增殖的區(qū)域提供了一個異質性腫瘤微環(huán)境,是腫瘤干細胞形成和維持干細胞特性的主要微環(huán)境[12]。同時,缺氧微環(huán)境能夠維持腫瘤細胞的未分化狀態(tài),增強其克隆形成率并能誘導特異性腫瘤干細胞標志基因CD133+的表達[13-14]。缺氧微環(huán)境對腫瘤細胞這種特異性影響,使得小部分異種腫瘤細胞CSC具有自我更新與不斷增值的能力,最近研究表明,HIFs也是維持腫瘤干細胞生物學特性的重要因素[15-16]。
3.1HIFs促進腫瘤干細胞的侵襲性和轉移
缺氧條件下HIF-α可以影響腫瘤血管和淋巴管生成以及上皮-間質轉變(epithelial-mesenchymal transition,EMT),促進腫瘤細胞和CSC的侵襲和轉移,從而引起對常規(guī)放化療的抵抗,最終導致腫瘤的進展[1]。缺氧條件下HIF-1和HIF-2能夠通過激活EMT相關通路(NF-κB、Notch、TGF-β、Wnt/β-catenin等)的調控子snail、twist以及相關的炎癥因子(TNF-α、IL-6和IL-1β)誘導EMT的表型和特征,并能上調上皮鈣黏蛋白(E-cadherin)、MMPs的表達從而促進腫瘤干細胞的侵襲和遷移[1,17]。同時在缺氧條件下腫瘤干細胞線粒體代謝產物能夠抑制PHD活性,提高HIF-1穩(wěn)定性,促進VEGF和促紅細胞生成素的生成,增加腫瘤細胞血供,形成一個更適合腫瘤干細胞生存的微環(huán)境,使得細胞遷移和侵襲能力得到增強[5]。此外,HIF-α活化也可以誘導CXCR4和賴氨酸氧化酶(lysyl oxidase,LOX)在腫瘤細胞及正常祖細胞中的表達,CXCR4可介導干細胞順著CXCR4配體CXCL12化學梯度歸巢到腫瘤缺氧微環(huán)境,研究也證實了CXCR4在腫瘤細胞中的高表達與腫瘤轉移性相關,LOX影響細胞外基質的結構,促進EMT增強腫瘤細胞的侵襲性[18]。
3.2HIFs增強腫瘤干細胞的抗凋亡能力
HIFs是腫瘤適應缺氧微環(huán)境的中心調節(jié)因子,也是影響腫瘤干細胞抗凋亡能力的主要因素。在缺氧刺激下,腫瘤干細胞的線粒體融合/分裂出現不平衡,線粒體融合蛋白Mfn1、Mfn2和BNIP3、BNIP3L等表達上調,兩者在HIF-α誘導下使線粒體融合增加,形態(tài)由正常管狀增大呈圓形或橢圓型;而線粒體融合增加,分裂受抑制,有助于維持線粒體膜電位,保護mtDNA,抑制腫瘤干細胞的凋亡[19]。Ye等[20]研究發(fā)現,人A549肺腺癌干細胞的線粒體膜電位明顯高于普通肺癌細胞,干細胞的線粒體形態(tài)出現類似的融合擴大,避免了人肺腺癌干細胞在化療藥中的損傷凋亡。HIFs能夠激活癌基因產物C-Raf、BC1-2,這些產物與線粒體外膜的電壓依賴性陰離子通道
(voltage dependent anion channel,VDAC)蛋白結合,抑制VDAC誘導的線粒體膜去極化,干預功能性線粒體通透性膜孔(permeability transition pore,PTP)通道形成,阻斷細胞色素C從線粒體釋放,從而抑制腫瘤干細胞的調亡[21-22]。同時,HIFs誘導的線粒體形態(tài)及功能異常使ROS產生受到抑制,引起mtDNA突變從而刺激癌細胞轉移相關蛋白的產生,促使腫瘤干細胞抗凋亡能力增強[23]。另外,HIF-α可以激活癌細胞NF-κB通路,NF-κB能夠與它的靶基因的啟動子區(qū)域相結合,有助于腫瘤細胞的存活而調控癌癥發(fā)生[24]。HIF-α還能通過調控靶基因GLUT1、GLUT3、LDHA和PDK1等表達,使腫瘤干細胞適應新的細胞能量代謝方式,避免缺氧刺激細胞凋亡[25]。
3.3HIFs對腫瘤干細胞“干性”作用的調控
缺氧微環(huán)境中能夠調控干細胞相關基因或信號通路促進腫瘤干細胞生成及表觀遺傳修飾,從而增強腫瘤的惡性潛能[4]。這可能是因為干細胞駐留在缺氧的壁龕里以減少氧化DNA的損傷,使腫瘤干細胞在缺氧壁龕中維持其干性[12]。缺氧條件下,HIF-1α能夠與Notch結合,穩(wěn)定和激活細胞內Notch的靶基因,維持CSC未分化狀態(tài);同時,HIF-1α能夠競爭性與β-catenin結合,抑制β-catenin-TCF-4復合物的形成,激活Wint/β-catenin通路,進而在缺氧微環(huán)境中維持腫瘤干細胞的增殖與自我更新能力,促進腫瘤的發(fā)生[26-27]。此外,研究發(fā)現HIF-2α及人類胚胎干細胞基因(OCT-4、Sox2)在腫瘤干細胞中的表達顯著高于非腫瘤干細胞[13-14]。Covello等[28]利用基因敲入技術將HIF-2α基因轉入人胚胎干細胞后發(fā)現,HIF-2α與OCT-4的轉錄水平直接相關。HIF-2α主要通過Wnt/β-catenin通路,激活下游靶基因OCT-4、Sox2等,從而調節(jié)干細胞的功能[29]。研究也證實,HIF-2α優(yōu)先表達在具有干細胞樣特征的神經腫瘤細胞中,將干細胞調節(jié)因子OCT-4鑒定為HIF-2α的靶基因,使得HIF-2α與干細胞的生物學特性直接聯系起來[30-31]。HIF-2α還能通過降低ROS水平,從而抑制p53基因,增強人類胚胎干細胞的干性和再生潛能[32]。另有研究發(fā)現,在腎透明癌中,HIF-2α能夠增強另一個干細胞因子C-Myc的轉錄活力,與OCT-4共同調節(jié)干細胞的功能,促進腫瘤細胞的發(fā)展[33]。因此,CSCs可能通過HIFs依賴的分子機制部分調控腫瘤干細胞的增殖、抗凋亡及自我更新的能力。
綜上所述,缺氧微環(huán)境下HIFs調控因子傾向于增強腫瘤干細胞的增殖、侵襲、遷移、血管形成和自我更新能力進而影響腫瘤微環(huán)境的發(fā)生和演進。因此,進一步了解HIFs對CSC分子機制的調節(jié)將有助于揭示腫瘤形成的機制,并為今后針對腫瘤干細胞靶向治療提供新的治療方法和策略,從而為降低腫瘤提復發(fā)、轉移成為可能,提高腫瘤患者的生存率帶來希望。
1Catalano V,Turdo A,Di Franco S,et al.Tumor and its microenvironment:A synergistic interplay[J].Seminars in Cancer Biology,2013,23(6):522-532.
2O'Connor ML,Xiang D,Shigdar S,et al.Cancer stem cells:A contentious hypothesis now moving forward[J].Cancer Lett,2014,344(2):180-187.
3Woll PS,Kjallquist U,Chowdhury O,et al.Myelodysplastic syndromes are propagated by rare and distinct human cancer stem cells in vivo[J].Cancer Cell,2014,25(6):794-808.
4Hanahan D,Weinberg RA.Hallmarks of Cancer:The Next Generation[J].Cell,2011,144(5):646-674.
5Philip B,Ito K,Moreno-Sanchez R,et al.HIF expression and the role of hypoxic microenvironments within primary tumours as protective sites driving cancer stem cell renewal and metastatic progression[J].Carcinogenesis,2013,34(8):1699-1707.
6Li SH,Chun YS,Lim JH,et al.von Hippel-Lindau protein adjusts oxygen sensing of the FIH asparaginyl hydroxylase[J].Int J Biochem Cell Biol,2011,43(5):795-804.
7Ferrer CM,Lynch TP,Sodi VL,et al.O-GlcNAcylation Regulates Cancer Metabolism and Survival Stress Signaling via Regulation of the HIF-1 Pathway[J].Mol Cell,2014,54(5):820-831.
8Mimeault M,Batra SK.Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer-and metastasis-initiating cells[J].J Cell Mol Med,2013,17(1):30-54.
9Chaturvedi P,Gilkes DM,Takano N,et al.Hypoxia-inducible factor-dependent signaling between triple-negative breast cancer cells and mesenchymal stem cells promotes macrophage recruitment[J].Proc Nati Acad Sci U S A,2014,111(20):E2120-E2129.
10 Chaturvedi P,Gilkes DM,Wong CC,et al.Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis[J].J Clin Invest,2013,123(1):189-205.
11 Magee JA,Piskounova E,Morrison SJ.Cancer Stem Cells:Impact,Heterogeneity,and Uncertainty[J].Cancer Cell,2012,21(3):283-296.
12 Sugrue T,Lowndes NF,Ceredig R.Hypoxia Enhances the Radioresistance of Mouse Mesenchymal Stromal Cells[J].Stem Cells,2014,32(8):2188-2200.
13 Mathieu J,Zhang Z,Zhou W,et al.HIF Induces Human Embryonic Stem Cell Markers in Cancer Cells[J].Cancer Research,2011,71(13):4640-4652.
14 Kim RJ,Park JR,Roh KJ,et al.High aldehyde dehydrogenase activity enhances stem cell features in breast cancer cells by activating hypoxia-inducible factor-2α[J].Cancer Lett,2013,333(1):18-31.
15 Samanta D,Gilkes DM,Chaturvedi P,et al.Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells[J].Proc Natl Acad Sci U S A,2014,111(50):E5429-E5438.
16 Keith B,Simon MC.Hypoxia-Inducible Factors,Stem Cells,and Cancer[J].Cell,2007,129(3):465-472.
17 Salnikov AV,Liu L,Platen M,et al.Hypoxia Induces EMT in Low and Highly Aggressive Pancreatic Tumor Cells but Only Cells with Cancer Stem Cell Characteristics Acquire Pronounced Migratory Potential[J].PLoS One,2012,7(9):e46391.
18 Jennbacken K,Welén K,Olsson A,et al.Inhibition of metastasis in a castration resistant prostate cancer model by the quinoline-3-carboxamide tasquinimod(ABR-215050)[J].The Prostate,2012,72(8):913-924.
19 Chiche J,Rouleau M,Gounon P,et al.Hypoxic enlarged mitochondria protect cancer cells from apoptotic stimuli[J].J Cell Physiol,2010,222(3):648-657.
20 Ye XQ,Li Q,Wang GH,et al.Mitochondrial and energy metabolism-related properties as novel indicators of lung cancer stem cells[J].Int J Cancer,2011,129(4):820-831.
21 Sharaf El Dein O,Gallerne C,Brenner C,et al.Increased expression of VDAC1 sensitizes carcinoma cells to apoptosis induced by DNA cross-linking agents[J].Biochemi Pharmacol,2012,83(9):1172-1182.
22 Brahimi-Horn MC,Ben-Hail D,Ilie M,et al.Expression of a Truncated Active Form of VDAC1 in Lung Cancer Associates with Hypoxic Cell Survival and Correlates with Progression to Chemotherapy Resistance[J].Cancer Res,2012,72(8):2140-2150.
23 Ralph SJ,Rodríguez-Enríquez S,Neuzil J,et al.The causes of cancer revisited:"Mitochondrial malignancy"and ROS-induced oncogenic transformation-Why mitochondria are targets for cancer therapy[J].Mol Aspects Med,2010,31(2):145-170.
24 Spirina LV,Kondakova IV,Choynzonov EL,et al.Expression of vascular endothelial growth factor and transcription factors HIF-1,NF-kB expression in squamous cell carcinoma of head and neck;association with proteasome and calpain activities[J].J Cancer Res Clin Oncol,2013,139(4):625-633.
25 Han S.Expression of pyruvate dehydrogenase kinase-1 in gastric cancer as a potential therapeutic target[J].Int J Oncol,2012,42(1):44-54.
26 Kaufman DS.HIF hits Wnt in the stem cell niche[J].Nat Cell Biol,2010,12(10):926-927.
27 Qiang L,Wu T,Zhang HW,et al.HIF-1alpha is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway[J].Cell Death Differ,2012,19(2):284-294.
28 Covello KL,Kehler J,Yu H,et al.HIF-2alpha regulates Oct-4:effects of hypoxia on stem cell function,embryonic development,and tumor growth[J].Genes Dev,2006,20(5):557-570.
29 Kelly KF,Ng DY,Jayakumaran G,et al.β-Catenin Enhances Oct-4 Activity and Reinforces Pluripotency through a TCF-Independent Mechanism[J].Cell Stem Cell,2011,8(2):214-227.
30 Pietras A,Gisselsson D,?ra I,et al.High levels of HIF-2α highlight an immature neural crest-like neuroblastoma cell cohort located in a perivascular niche[J].J Pathol,2008,214(4):482-488.
31 Bhaskara VK,Mohanam I,Rao JS,et al.Intermittent hypoxia regulates stem-like characteristics and differentiation of neuroblastoma cells[J].PLoS One,2012,7(2):e30905.
32 Das B,Bayat-Mokhtari R,Tsui M,et al.HIF-2α Suppresses p53 to Enhance the Stemness and Regenerative Potential of Human Embryonic Stem Cells[J].Stem Cells,2012,30(8):1685-1695.
33 Gordan JD,Bertout JA,Hu CJ,et al.HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity[J]. Cancer Cell,2007,11(4):335-347.
(2015-02-03收稿)
(2015-03-11修回)
(編輯:楊紅欣)
Research progress on effects of hypoxia inducible factors on maintenance of cancer stem cell biological characteristics
Jihua ZHAO,Xiaoqun YE
Xiaoqun YE;E-mail:511201663@qq.com
Hypoxic microenvironment is a typical characteristic of solid tumors and is considered an independent risk factor in tumor progression and poor prognosis.Hypoxic microenvironment is a critical part of cancer stem cell(CSC)niche and plays an important role in the evolution of cancer stem cells in tumors and in apoptosis resistance.As a key factor in the tumor's adaption to hypoxic microenvironment,hypoxia inducible factors(HIFs)can induce biological behavioral changes in CSCs that can accelerate tumor malignant transformation.Such behavioral changes include anti-apoptosis,enhancement of drug-resistance gene expression,and tumor invasion and metastasis.HIFs are also among the main factors affecting the capacity of CSCs to maintain their biological characteristics.In this review,the authors focus on recent advances in our understanding of the role that HIFs play in maintaining the biological characteristics of CSCs.
HIFs,CSCs,anti-apoptosis,invasion,biological characteristics

10.3969/j.issn.1000-8179.20150177
南昌大學第二附屬醫(yī)院呼吸內科(南昌市330006)
*本文課題受國家自然科學基金項目(編號:81160027)和江西省自然科學基金項目(編號:20114BAB205001)資助
葉小群511201663@qq.com
趙記華專業(yè)方向為肺癌干細胞相關性研究。
E-mail:286230479@qq.com