999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Research on fuzzy control technology of DC motor in height automatic adjusting system of CNC cutting machine

2015-11-03 07:02:01AichengZOUQunyingWANG
機床與液壓 2015年3期

Ai-cheng ZOU, Qun-ying WANG

(Guilin University of Aerospace Technology, Guilin 541004, China)

?

Research on fuzzy control technology of DC motor in height automatic adjusting system of CNC cutting machine

Ai-cheng ZOU*, Qun-ying WANG

(Guilin University of Aerospace Technology, Guilin 541004, China)

Motor control technology is the key factor for height automatic adjusting system of CNC cutting machine. In this paper, one DC motor control technologyis put forward based on the fuzzy control technology and PWM control technology, and the fuzzy controller is designed as well. Experimental results show that the control accuracy and sensitivity of height automatic adjusting system will be improved by using the fuzzy control technology and PWM control technology.

PWM, Fuzzy control, Height automatic adjustment system

1 Introduction

In order to improve the cutting quality and reduce waste generation, it needs to keep the height between cutting torch of CNC cutting machine and the material to be processed on the setting value during the cutting process. Height automatic adjusting system (HAAS) is the key component of CNC cutting machine to realize this function. The control effect of DC motor has direct impact on the accuracy and sensitivity of HAAS. In this paper, one DC motor control technology is put forward based on the fuzzy control technology and PWM control technology, and the fuzzy controller is designedas well in order to effectively improve the control accuracy and sensitivity of HAAS.

2 Control scheme of HAAS

The driving system of HAAS adopts “H-Bridge” and “Bipolar reversible PWM”, which is shown in Fig.1. The “H-Bridge” compose of triodes (V1-V4) and diodes (D1-D4). The MCU analogs the output of PWM, and controls the conduction and cutoff of triodes (V1-V4) in use of the photoelectric coupler. Divided triodes (V1-V4) into two groups, V1 and V4 as one group, V2 and V3 as another group. The two triodes in one group will conduct or cutoff at the same time. The timing diagram of U1 and U2 is shown in Fig.2.

In each cycle of the PWM, the triode V1 and V4 are conducting state, V2 and V3 are cutoff state, when the control signal U1 is high voltage and U2 is low voltage. The armature winding of DC motor will under positive voltage from A to B. The triode V1 and V4 are in cutoff state, V2 and V3 are in conducting state, when the control signal U1 is low voltage and U2 is high voltage. The armature winding of DC motor will under reverse voltage from B to A. The average voltage could be determined as follows:

From the average voltage calculation formula, it is clear that the speed of DC motor is decided byα. The DC motor reversal will reach to the maximum speed whenαis equal to zero. The DC motor is transferred with the maximum speed whenαis equal to 1. The DC motor will stop whenαis equal to 1/2.

Fig. 1 Driving system of DC motor

Fig. 2 Timing diagram of U1- U2

3 Fuzzy controller

3.1 Fuzzy control scheme

The following scheme can effectively improve the problems of slow response and low accuracy of HAAS. When adjust the moving speed (V) of the cutting torch dynamically according to the real-time height value (dx) between cutting torch and the material to be processed, the torch will move quickly if the difference between dx and d is large, otherwise, the torch will move slowly. In this way, it can not only adjust the height quickly, but also reduce the error caused by the inertia of the motor at maximum extent. According to this, fuzzy control scheme of DC motor could be designed as shown in Fig.3.

Fig.3 Scheme of fuzzy control

Detect the height value (dx) between cutting torch and the material to be processed in real time, and compare with the initial set value (d). The pitch deviation (e) and the deviation change rate (ec) could be obtained. Converteandecfrom basic domain to the quantification domain, that is to say, multiplyebyKe,andecbyKec. According to the input membership function to calculate the membership degree (EandEC) of each input variable of the fuzzy sets. And then one can get the output fuzzy quantitative value and the actual control value of the PWM.

3.2 Fuzzy process the variables

Fuzzy process the variables are as follows:

1) Pitch deviation (e)

Quantification domain:{-6,-5,-4,-3,-2,-1, 0, 1, 2, 3, 4, 5, 6};

Fuzzy set:{NB,NM,NS,ZO,PS,PM,PB}.

2) Deviation change rate (ec)

Basic domain: initially set pitch of -1% - 1%;

Quantification domain:{-6,-5,-4,-3,-2,-1, 0, 1, 2, 3, 4, 5, 6};

Fuzzy set:{NB,NM,NS,ZO,PS,PM,PB}.

3) Duty ratio (α)

Basic domain: initially set pitch of -0.25 -0.25;

Quantification domain:{-6,-5,-4,-3,-2,-1, 0, 1, 2, 3, 4, 5, 6};

Fuzzy set:{NB,NM,NS,ZO,PS,PM,PB}.

The membership function of the variable is made of triangular distribution. The initial set value (d) is decided by the control requirements. Give the initial valueαas 3/4 when the DC motor is in transferring state. Give the initial valueαas 1/4 when the motor is in reversal state.

3.3 Fuzzy rule table

The fuzzy rule table is the key to the fuzzy controller. Summary the fuzzy control rules according to experience, and establish the fuzzy rules table as shown in Table 1.

Whenα<1/2, the analysis method is similar toα≧1/2.

According to Table 1:

WhenEis NB andECis NB, the deviation has a tendency to increase. In order to eliminate the negative large deviation and inhibition the deviation increasing further as soon as possible, the speed of DC motor should be given as PB. When the deviation change rate is PB, the speed of DC motor should reduce. Otherwise, it will cause bigovershoot.

WhenEis NS, the system is close to the steady state. IfECis NS, the speed of DC motor should be given as PS to suppress the bias change towards negative direction. If the deviation change rate is positive, the system has the trend to eliminate the deviation, the speed of DC motor should be given as NS.

Table 1 Fuzzy rule

α≥1/2ENBNMNSZOPSPMPBECNBPBPBPMPMPSPSZONMPBPMPMPSPSZONSNSPMPMPSPSZONSNSZOPMPSPSZONSNSNMPSPSPSZONSNSNMNMPMPSZONSNSNMNMNBPBZONSNSNMNMNBNBα<1/2ENBNMNSZOPSPMPBECNBNBNBNMNMNSNSZONMNBNMNMNSNSZOPSNSNMNMNSNSZOPSPSZONMNSNSZOPSPSPMPSNSNSZOPSPSPMPMPMNSZOPSPSPMPMPBPBZOPSPSPMPMPBPB

4 Test analysis

According to the fuzzy control, HAAS is designed and the corresponding experiments are carried out and the test results are shown in Table 2. In this table,Eis the difference betweendxandd,Tis time used by HAAS fromdxtod,Pis precision of the system.

Table 2 Test result

E/mmWithouttheuseoffuzzycontrolT/SP/mmUsefuzzycontrolT/SP/mm<5<1.5<±0.3<0.5<±0.1<10<1.5<±0.3<0.5<±0.1<15<1.5<±0.3<0.5<±0.1<20<2.0<±0.3<0.8<±0.2<30<2.0<±0.3<0.8<±0.3<40<3.0<±0.8<1.0<±0.4<50<3.0<±1.0<1.0<±0.5>50<3.0>2.01.0>0.5

CompareTandPin the columns “Without the use of fuzzy control” and “Use fuzzy control”. It is clear that both theTandPin case of using fuzzy control are lower than those cases without using fuzzy control. Therefore, HAAS has higher precision in case of using fuzzy control, and it could meet the requirements better.

Acknowledgements

This paper is supported by the Guangxi Education Department Fundation (No.2013YB274) and the Guilin University of Aerospace Technology Fundation (No. YJ1047).

[1]Huang X L, Liu J C, Liu H J. Cement Decomposing Furnace Temperature Control Based on the Fuzzy Control Technology [J]. China Building Materials Science and Technology, 2014(3): 54.

[2]Xie C J, Bao H, DU J L. Application of a New Membership Function to Nonlinear Fuzzy PID Controllers with Variable Gains [J]. Information and Control, 2014(3): 264-269.

[3]Hu S S, Weng H H, Weng J X. Design of Fuzzy Controller Based on Primary Tower Temperature Control [J]. Automation and Instrumentation, 2013(6): 35.

[4]He X X, Yan J L, Xu C H. Monitoring and control for sub-sea mud-lift drilling system [J]. Journal of China University of Petroleum, 2012(3): 129-132.

[5]Miao J L, Zou J. Design for Direct Torque Controlled Brushless DC Motor [J]. Application of Electronic Technique, 2011(7): 88-91.

[6]Barlat F, Yoon J W, Cazacu O. On linear transformations of stress tensors for the description of plastic anisotropy[J]. International Journal of Plasticity, 2007, 23: 876-896.

[7]Cazacu O, Barlat F. A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals[J]. International Journal of Plasticity 2004, 20: 2027-2045.

[8]Jiang Y Y, Zhang M, Lee C H. Finite element modeling of self-loosening of bolted joints[J]. ASME Journal of Mechanical Design, 2007, 129: 218-226.

[9]Kan Q H, Kang G Z, Zhang J. Uniaxial time-dependent ratchetting: Visco-plastic model and finite element application[J]. Theoretical and Applied Fracture Mechanics, 2007, 47(2):133-144.

[10]Kang G Z, Gao Q, Yang X J. Uniaxial and non-proportionally multiaxial ratcheting of SS304 stainless steel at room temperature: experiments and simulations[J]. International Journal of Non-Linear Mechanics, 2004, 39(5): 843-857.

[11]Kang G Z. Finite element implementation of visco-plastic constitutive model with strain-range-dependent cyclic hardening[J]. Communications in Numerical Methods in Engineering, 2006, 22(2):137-153.

[12]Kang G Z, Gao Q, Yang X J. A visco-plastic constitutive model incorporated with cyclic hardening for uniaxial/multiaxial ratcheting of SS304 stainless steel at room temperature[J]. Mechanics of Materials, 2002, 34(9):521-531.

[13]Kang G Z. Finite element implementation of visco-plastic constitutive model with strain-range-dependent cyclic hardening[J]. Communications in Numerical Methods in Engineering, 2006, 22(2):137-153.

[14]Chaboche J L. A review of some plasticity and viscoplasticity constitutive theories[J]. International Journal of Plasticity, 2008, 24:1642-1693.

[15]Wang T, Chen G, Wang Y P, et al. Uniaxial ratcheting and fatigue behaviors of low-temperature sintered nano-scale silver paste at room and high temperatures[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2010, 527(24-25): 6714-6722.

摘要:在FMS物流系統的實時調度優化方面,主要是針對AGV運輸展開的調度研究。簡要介紹了兩種形式的AGV調度策略:基于遺傳算法(GA)的AGV調度、基于粒子群算法(PSO)的AGV調度;將模型及調度優化思想以具體的實例進行驗證,以已開發出的仿真程序為基礎,在其中融入調度模塊,通過實時運行的假定加工任務數據,證實實時調度優化后系統的任務完成時間有明顯縮短,提高了整個系統的任務加工處理效率。

關鍵詞: 柔性制造系統;實時調度;遺傳算法;粒子群算法

基于模糊控制技術的數控切割機自動調高器中直流電機控制研究

鄒愛成*, 王群英

桂林航天工業學院,桂林541004

電機控制技術是數控切割機自動調高器的關鍵技術之一。提出了基于模糊控制技術和PWM控制技術的數控切割自動調高器的直流電機控制系統方案,設計了模糊控制器,實驗結果表明:通過使用模糊控制技術和PWM控制技術能明顯提高自動調高器的控制精度和靈敏度。

PWM;模糊控制;自動調高器

(Continued from 47 page)

柔性制造系統實時調度與優化研究

徐德凱*,王麗潔,史衛朝

西安理工大學 高等技術學院, 西安710082

16 March 2015; revised 29 May 2015;

Ai-cheng ZOU, Ph.D., Lecturer.

E-mail:zouaicheng@guat.edu.cn

10.3969/j.issn.1001-3881.2015.18.009 Document code: A

TM934.23

accepted 6 June 2015

Hydromechatronics Engineering

http://jdy.qks.cqut.edu.cn

E-mail: jdygcyw@126.com

主站蜘蛛池模板: 国产成人夜色91| 日韩在线成年视频人网站观看| 一级毛片在线播放| 色亚洲成人| 亚洲精品老司机| 欧美三级视频网站| 国产呦视频免费视频在线观看| 国产精品第5页| 国产噜噜在线视频观看| 欧美日韩激情在线| 国产黄色视频综合| 国产在线视频二区| 精品人妻系列无码专区久久| 无码粉嫩虎白一线天在线观看| 无码区日韩专区免费系列| 精品三级在线| 亚洲视频免费播放| 99热最新网址| 曰韩免费无码AV一区二区| 国产无码精品在线| 国产特一级毛片| 欧美人在线一区二区三区| 91视频精品| 国产精品不卡片视频免费观看| 日本精品影院| 在线播放精品一区二区啪视频| 亚洲男人天堂2020| 欧美激情综合| 99久久国产自偷自偷免费一区| 极品性荡少妇一区二区色欲| 青青草原国产| 四虎永久在线| 色精品视频| 欧美不卡在线视频| 久久精品这里只有精99品| 国产成人亚洲毛片| 爽爽影院十八禁在线观看| 久久九九热视频| 亚洲成a人片77777在线播放| 中文字幕日韩视频欧美一区| 99久久免费精品特色大片| 一本无码在线观看| 刘亦菲一区二区在线观看| 2021国产精品自产拍在线观看| 亚洲高清在线天堂精品| 色吊丝av中文字幕| 国产99在线| 免费观看男人免费桶女人视频| 中文字幕在线一区二区在线| 极品国产一区二区三区| 亚洲日韩图片专区第1页| 成人91在线| 亚洲另类色| 国产91av在线| 国产成人91精品| 久久精品中文无码资源站| 99偷拍视频精品一区二区| 亚洲天堂网视频| 欧类av怡春院| 久久狠狠色噜噜狠狠狠狠97视色| 又爽又大又黄a级毛片在线视频| 欧美翘臀一区二区三区| 3p叠罗汉国产精品久久| 91精品福利自产拍在线观看| 91精品最新国内在线播放| 五月激情婷婷综合| 一级毛片免费的| 55夜色66夜色国产精品视频| 国产97公开成人免费视频| 欧美精品在线视频观看| 无码电影在线观看| 免费国产高清视频| 毛片网站在线看| 亚洲人成在线精品| 四虎永久免费地址| 农村乱人伦一区二区| 亚洲国模精品一区| 久久久久久国产精品mv| 色欲不卡无码一区二区| 国产久草视频| 婷婷伊人久久| 91午夜福利在线观看|