999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

關(guān)于Bernstein-Durrmeyer-Bézier算子在Orlicz空間內(nèi)的逼近

2015-10-14 05:44:20鄧雪莉吳嘎日迪

鄧雪莉,吳嘎日迪

(內(nèi)蒙古師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院,呼和浩特 內(nèi)蒙古 010022)

關(guān)于Bernstein-Durrmeyer-Bézier算子在Orlicz空間內(nèi)的逼近

鄧雪莉,吳嘎日迪

(內(nèi)蒙古師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院,呼和浩特 內(nèi)蒙古010022)

在連續(xù)函數(shù)空間和Lp空間內(nèi)研究算子逼近方法的基礎(chǔ)上,利用一階Ditzian-Totik積分模與不等式技巧研究了Bernstein-Durrmeyer-Bézier算子在Orlicz空間內(nèi)的逼近性質(zhì).得到了Bernstein-Durrmeyer-Bézier算子在Orlicz空間內(nèi)的逼近正定理和逼近等價定理.由于Orlicz空間比連續(xù)函數(shù)空間和Lp空間都“大”,其拓撲結(jié)構(gòu)也比Lp空間復(fù)雜得多,所以本文的結(jié)果具有一定的拓展意義.

Bezier型算子;逼近正定理;等價定理;K-泛函;光滑模

1 引言

Bernstein-Durrmeyer-Bézier算子的定義為[1]:

其中

顯然,Dn,α(f,x)是正線性算子并且Dn,α(1,x)=1.當(dāng)α=1時,Dn,α(f,x)就是Durrmeyer算子

本文將利用Ditzian-Totik模研究算子Dn,α(f,x)在Orlicz空間內(nèi)的逼近正定理及逼近等價定理.

M(u)和N(v)表示互余的N函數(shù),關(guān)于N函數(shù)的定義及其性質(zhì)見文獻[2].由N函數(shù)M(u)生成的Orlicz空間L?M[0,1]是指具有有限Orlicz范數(shù):

的可測函數(shù)全體{u(x)},其中

是v(x)關(guān)于N(v)的模.

由文獻[2]知,Orlicz范數(shù)其等價形式為:

在下文中用L?M[0,1]表示帶有Orlicz范數(shù)的Orlicz空間.對于f∈L?M[0,1],定義其光滑模和K-泛函如下:

其中

由文獻[3-4]知

這里a~b的含義是存在常數(shù)C>0,使得C-1a≤b≤Ca.

用C表示與n,x無關(guān)的正常數(shù),但在不同處可以表示不同的數(shù)值.

2 正定理

首先列出一些將要用到的性質(zhì),這些性質(zhì)都可以通過簡單計算得到.

為了證明正定理,首先證明幾個引理.

引理 2.1對于f∈L?M[0,1],有

證明由(2.5)式和文獻[5]中的引理1.1.1的結(jié)論,有

引理得證.

與文獻[6]中相應(yīng)結(jié)果的證明完全相仿,有

引理2.2對Pm∈Πm(定義在[0,1]上次數(shù)不超過m的代數(shù)多項式全體),k∈N,有

下面給出逼近正定理

3 等價定理

為了證明等價定理,首先給出兩個引理.

定理3.1 設(shè)

[1]Chang G.Generalized Bernstein-Bézier polynomial[J].J.Comput.Math.,1983,1(4):322-327.

[2]王廷輔.奧爾里奇空間及其應(yīng)用[M].哈爾濱:黑龍江科學(xué)技術(shù)出版社,1983.

[3]Wu Garidi.On Approximation by polynomials in Orlicz spaces[J].A.T.A.,1991,7(3):97-110.

[4]Ditzian Z,Totik V.Mouli of Smoothness[M].NewYork:Spring-Verlag,1987.

[5]顧春賀.Orlicz空間中幾個逼近問題的研究[D].內(nèi)蒙古師范大學(xué):圖書館,2009.

[6]郭順生,劉國芳,宋占杰.關(guān)于Bernstein-Durrmeyer-Bézier算子在Lp空間中的逼近[J].數(shù)學(xué)物理學(xué)報:A輯,2010,30(6):1424-1434.

[7]Zeng X,Chen W.On the rate of convergence of the generalized Durrmeyer type operators for function of bounded variation[J].J.Approx.Theory,2000,102:1-12.

[8]陳廣榮,吳嘎日迪.Orlicz空間中的聯(lián)合最佳逼近[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),1992,8(1):102-104.

On approximation of Bernstein-Durrmeyer-Bézier operators in Orlicz spaces

Deng Xueli,Wu Garidi

(college of mathematics Science,Inner Mongolia Normal University,Hohhot010022,China)

In this paper we investigate the approximation problem of Bernstein-Durrmeyer-Bézier operators in Orlicz spaces based on the methods of studying the operator approximation in continuous function space and Lpspace,and used the tools of Ditzian-Totik integral modulus,with the help of the inequality techniques,and obtain the results of direct theorem and equivalence theorem on approximation of Bernstein-Durrmeyer-Bézier operators in Orlicz spaces.Because the Orlicz space is“big”than continuous function space and Lpspace,and its topological structure is more complicated than Lpspace,the results of this paper have certain expansion significance.

Bézier-type operator,direct theorem,equivalence theorem,K-functional,modulus of smoothness,elementary method,conjecture

O174.41

A

1008-5513(2015)03-0307-11

10.3969/j.issn.1008-5513.2015.03.012

2012-11-13.

國家自然科學(xué)基金(11161033);內(nèi)蒙古師范大學(xué)人才工程基金(RCPY-2-2012-K-036).

鄧雪莉(1986-),碩士生,研究方向:函數(shù)逼近論.

吳嘎日迪(1962-),碩士,教授,研究方向:函數(shù)逼近論.

2010 MSC:26A15

主站蜘蛛池模板: 亚洲精品无码av中文字幕| 亚洲日韩欧美在线观看| 国产免费福利网站| 国产日韩欧美精品区性色| 亚洲高清在线播放| 高清无码一本到东京热| 91小视频在线| 亚洲欧洲日韩综合| 一级片一区| 亚洲欧洲日本在线| 欧美日韩免费| 国产一级无码不卡视频| 国产一级毛片yw| 国产在线精彩视频二区| 色成人亚洲| 国产美女免费| 中文字幕亚洲精品2页| 一级毛片免费观看久| 精品国产99久久| 亚洲福利视频网址| 精久久久久无码区中文字幕| 五月婷婷丁香色| 国产一区二区三区在线观看视频 | 一本大道视频精品人妻| 少妇精品在线| 亚洲熟女中文字幕男人总站| 无码免费视频| 香蕉蕉亚亚洲aav综合| 免费日韩在线视频| 国产精品欧美在线观看| 久久综合干| 色老二精品视频在线观看| 91娇喘视频| 欧美精品1区| 国产波多野结衣中文在线播放| 免费99精品国产自在现线| 999国内精品视频免费| 国产三级a| 99精品视频在线观看免费播放| 国产激情在线视频| 国产精品福利导航| 亚洲天堂色色人体| 无码在线激情片| 精品综合久久久久久97超人| av色爱 天堂网| 欧美日韩在线成人| 一本久道久久综合多人| 久草视频精品| 亚洲三级电影在线播放| 久久99久久无码毛片一区二区| 欧美色亚洲| 亚洲精品综合一二三区在线| 毛片网站观看| jizz国产视频| 亚洲免费黄色网| 中国国产A一级毛片| 亚洲日本www| 亚洲第一页在线观看| 欧美日韩中文国产va另类| 日韩欧美中文| 亚洲αv毛片| 久久这里只有精品66| 亚洲无码视频图片| 国产又爽又黄无遮挡免费观看| 欧美国产菊爆免费观看| 日韩 欧美 国产 精品 综合| 国产欧美又粗又猛又爽老| 欧美日韩高清在线| 亚洲色欲色欲www网| 97国产在线视频| 欧美日韩另类在线| 在线观看国产精品日本不卡网| 日韩天堂网| 97视频精品全国免费观看| 成人国产精品2021| 亚洲永久精品ww47国产| 无码精油按摩潮喷在线播放| 91国内外精品自在线播放| 欧美三级自拍| 欧美精品亚洲精品日韩专| 国产精品无码一二三视频| 五月婷婷综合在线视频|