999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Classification of Phase Portraits of Z2-Equivariant Planar Hamiltonian Vector Fields of Degree 7(Ⅵ)*

2015-09-13 01:40:04LiYanmei
楚雄師范學院學報 2015年9期

Li Yanmei

(School of Mathematics and Statistics,Chuxiong Normal University,Yunnan Chuxiong,675000,China)

The Hilbert’s 16th problem has been studied for more than one hundred years,but it is still a mathematics problem for twenty - one century[1].In recent decades,some progresses have been made,but there are still many works to be done.In order to use the method of disturbance to get the limit cycles,the phase portraits of undisturbed system must be obtained first.The work here is to study the phase portraits of the following Z2-equivariant planar Hamiltonian vector fields of degree 7 and get 25 new phase portraits which are different from those appeared in the papers[2-6],where k is a parameter with k > 0 and m=k+0.1,n=k+0.2.

1 Qualitative analysis of system(1)

Obviously,the system has 49 singular points:(0,0),(±1,0),(±1.2,0),(±1.3,0),(0,±k),(0,± m),(0,± n),(±1,± k),(±1.2,± k),(±1.3,± k),(±1,± m),(±1.2,± m),(±1.3,± m),(± 1,± n),(± 1.2,± n)and(± 1.3,± n).Because the system(1)is of Z2- equivariant property,we only discuss the singular points in the first and second quadrants.

The Jacobian of the system(1)is

Investigating the Jacobians of these singular points,we have no difficulty in obtaining the following results:

Theorem 1 The singular points(0,0),(±1.2,0),(0,m),(±1.2,m),(±1,k),(±1.3,k),(±1,n)and(± 1.3,n)are center,and the others are saddle points.

2 The Global Phase Portraits of the System(1)

The Hamiltonian of the system(1)is

Investigating the Hamiltonians of the singular points,we get the following results.

Theorem 2 The system(1)has 25 different phase portraits,each of them corresponding to the value of k in the following ranges:(1)0 < k < 0.121978,(2)k=0.121978,(3)0.121978 < k < 0.437713,(4)k=0.437713,(5)0.437713 < k < 0.438442,(6)k=0.438442,(7)0.438442 < k < 0.545598,(8)k=0.545598,(9)0.545598 < k < 0.545936,(10)k=0.545936,(11)0.545936 < k < 1.05729,(12)k=1.05729,(13)1.05729 < k < 1.05825,(14)k=1.05825,(15)1.05825 < k < 1.05828,(16)k=1.05828,(17)1.05828 < k < 1.25187,(18)k=1.25187,(19)1.25187 < k < 1.31853,(20)k=1.31853,(21)1.31853 < k < 1.88784,(22)k=1.88784,(23)1.88784 < k < 1.9545,(24)k=1.9545,(25)k > 1.9545.

Proof We separately denote H(0,0),H(±1,0),H(±1.2,0),H(± 1.3,0),H(0,k),H(0,m),H(0,n),H(± 1,k),H(± 1,m),H(± 1,n),H(± 1.2,k),H(± 1.2,m),H(± 1.2,n),H(± 1.3,k),H(1.3,m),H(± 1.3,n)and H(x,y)by h00,ha0,hb0,hc0,h0k,h0m,h0n,hak,ham,han,hbk,hbm,hbn,hck,hcm,hcnand hxy.Obviously,hxy=hx0+h0y,ha0< hc0< hb0< 0,h0n< h0k< h0m.Since the difference of the phase portraits depends on the relations of the Hamiltonians of the singular points of the system,we only need to study the relations between the value of k and the Hamiltonians of the singular points.For the case of brevity,merely the cases(1)~(5),(11)~(15),(21)~(25)are proven here.

(1)When 0 < k < 0.121978,the values of hxysatisfy the relations

han<hak<ha0<ham<hcn<hck<hc0<hcm<hbn<hbk<hb0<hbm<h0n<h0k<h00<h0m,and the phase portraits of system(1)is displayed by Fig.1(1).

(2)When k=0.121978,h0m=0,and the values of hxysatisfy the relations

han<hak<ha0=ham<hcn<hck<hc0=hcm<hbn<hbk<hb0=hbm<h0n<h0k<h00=h0m,hence,the phase portraits of system(1)is displayed by Fig.1(2).

(3)When 0.121978 < k < 0.437713,the values of hxysatisfy the relations

han<hak<ham<ha0<hcn<hck<hcm<hc0<hbn<hbk<hbm<hb0<h0n<h0k<h0m<h00,and the phase portraits of system(1)is displayed by Fig.1(3).

(4)When k=0.437713,hc0=hbn,and the values of hxysatisfy the relations

han<hak<ham<ha0<hcn<hck<hcm<hc0=hbn<hbk<hbm<hb0<h0n<h0k<h0m<h00,hence,the phase portraits of system(1)is displayed by Fig.1(4).

(5)When 0.437713 < k < 0.438442,the values of hxysatisfy the relations

han<hak<ham<ha0<hcn<hck<hcm<hbn<hc0<hbk<hbm<hb0<h0n<h0k<h0m<h00,and the phase portraits of system(1)is displayed by Fig.1(5).

(11)When 0.545936 < k < 1.05729,the values of hxysatisfy one of the following relations

han<hak<ham<hcn<hck<hcm<hbn<hbk<hbm<ha0<hc0<hb0≤h0n<h0k<h0m<h00,

han<hak<ham<hcn<hck<hcm<hbn<hbk<hbm<ha0<hc0<h0n<hb0≤h0k<h0m<h00,

han<hak<ham<hcn<hck<hcm<hbn<hbk<hbm<ha0<hc0<h0n<h0k<hb0≤h0m<h00,

han<hak<ham<hcn<hck<hcm<hbn<hbk<hbm<ha0<hc0<h0n<h0k<h0m<hb0<h00,where hb0=h0nas k=1.05702,hb0=h0kas k=1.05705,bb0=h0mas k=1.05717,so the phase portrait is displayed by Fig.1(11).

(12)When k=1.05729,we have hc0=h0n,the values of hxysatisfy the relations

han<hak<ham<hcn<hck<hcm<hbn<hbk<hbm<ha0<hc0=h0n<h0k<h0m<hb0<h00,and the phase portrait is displayed by Fig.1(12).

(13)When1.05729 < k < 1.05825,the Hamiltonians of the singular points satisfy one of the following relations

han<hak<ham<hcn<hck<hcm<hbn<hbk<hbm<ha0<h0n<hc0≤h0k<h0m<hb0<h00,

han<hak<ham<hcn<hck<hcm<hbn<hbk<hbm<ha0<h0n<h0k<hc0≤h0m<hb0<h00,

han<hak<ham<hcn<hck<hcm<hbn<hbk<hbm<ha0<h0n<h0k<h0m<hc0<hb0<h00,where h0k=hc0as k=1.05732,h0m=hc0as k=1.05744,and the phase portrait is displayed by Fig.1(13).

(14)When k=1.05825,we get ha0=h0n,and the Hamiltonians of the singular points satisfy the relations

han<hak<ham<hcn<hck<hcm<hbn<hbk<hbm<ha0=h0n<h0k<h0m<hc0<hb0<h00,so the phase portrait is displayed by Fig.1(14).

(15)When 1.05825 < k < 1.05828,the Hamiltonians of the singular points satisfy the relations

han<hak<ham<hcn<hck<hcm<hbn<hbk<hbm<h0n<ha0<h0k<h0m<hc0<hb0<h00,and the phase portrait is displayed by Fig.1(15).

(21)When1.31853 < k < 1.88784,the Hamiltonians of the singular points satisfy one of the following relations

han<hak<ham≤hcn<hck<hbn<hbk<hcm<hbm<h0n<h0k<h0m<ha0<hc0<hb0<h00,

han<hak<hcn<ham≤hck<hbn<hbk<hcm<hbm<h0n<h0k<h0m<ha0<hc0<hb0<h00,

han<hak<hcn<hck<ham<hbn<hbk<hcm<hbm<h0n<h0k<h0m<ha0<hc0<hb0<h00,where ham=hcnas k=1.76678,ham=hckas k=1.83353,and the phase portrait is displayed by Fig.1(21).

(22)When k=1.88784,the Hamiltonians of the singular points satisfy the relations

han<hak<hcn<hck<ham=hbn<hbk<hcm<hbm<h0n<h0k<h0m<ha0<hc0<hb0<h00,and the phase portrait is displayed by Fig.1(22).

(23)When 1.88784 < k < 1.9545,the Hamiltonians of the singular points satisfy the relations

han<hak<hcn<hck<hbn<ham<hbk<hcm<hbm<h0n<h0k<h0m<ha0<hc0<hb0<h00,and the phase portrait is displayed by Fig.1(23).

(24)When k=1.9545,the Hamiltonians of the singular points satisfy the relations

han<hak<hcn<hck<hbn<ham=hbk<hcm<hbm<h0n<h0k<h0m<ha0<hc0<hb0<h00,and the phase portrait is displayed by Fig.1(24).

(25)When k > 1.9545,the Hamiltonians of the singular points satisfy the relations

han<hak<hcn<hck<hbn<hbk<ham<hcm<hbm<h0n<h0k<h0m<ha0<hc0<hb0<h00,and the phase portrait is displayed by Fig.1(25).

Fig.1(1)~(25)The phase portraits of Sy.(1)

Obviously,none of the phase portraits is alike those appeared in the papers[2-7],although the second equation of system(1)is the same as that in the paper[7].

[1]Steve Smale.Mathematical problems for the next century.Math.Intell.Vol.20,no.2,7—15,1998.

[2]Li Yanmei,Hu Zhao.Classification of Phase Portraits of Z2- Equivariant Planar Hamiltonian-Vector Field of Degree 7(Ⅰ)[J].Journal of Chuxiong Normal University,2012,27(6):1—5.

[3]Li Yanmei.Classification of Phase Portraits of Z2-Equivariant Planar Hamiltonian Vector Field of Degree 7(Ⅱ)[J].Journal of Chuxiong Normal University,2012,27(9):1—5.

[4]Li Yanmei.Classification of Phase Portraits of Z2-Equivariant Planar Hamiltonian Vector Field of Degree 7(Ⅲ)[J].Journal of Chuxiong Normal University,2013,28(9):1—4.

[5]Li Yanmei.Global Phase Portraits and Classification of Z2-Equivariant Planar Hamiltonian Vector Fields of Degree 7 with infinite singular points(Ⅰ)[J].Journal of Chuxiong Normal University,2014,29(3):1—4.

[6]Li Yanmei.Classification of Phase Portraits of Z2-Equivariant Planar Hamiltonian Vector Field of Degree 7(Ⅳ)[J].Journal of Chuxiong Normal University,2014,29(9):1—5.

[7]Li Yanmei.Classification of Phase Portraits of Z2-Equivariant Planar Hamiltonian Vector Field of Degree 7(Ⅴ)[J].Journal of Chuxiong Normal University,2015,30(6):1—6.

主站蜘蛛池模板: 亚洲日本中文字幕天堂网| 亚洲日韩精品综合在线一区二区 | 亚洲国产AV无码综合原创| 色悠久久综合| 综合色天天| 亚洲精品片911| 爱做久久久久久| 特级aaaaaaaaa毛片免费视频| 青青青视频蜜桃一区二区| 91九色视频网| 国产精品刺激对白在线| 国产成人无码综合亚洲日韩不卡| 亚洲国产成熟视频在线多多 | 国产激情无码一区二区免费| 中文国产成人精品久久| 中国精品久久| 青青青国产视频| 国产农村1级毛片| 国产精品永久免费嫩草研究院| 高清无码一本到东京热| 精品亚洲欧美中文字幕在线看 | 91黄色在线观看| 国产一区二区影院| 国产高清免费午夜在线视频| 久久久噜噜噜久久中文字幕色伊伊 | 国产一级裸网站| 国产国产人免费视频成18| 日韩精品一区二区三区大桥未久| 露脸真实国语乱在线观看| 国产jizz| 免费不卡在线观看av| 久久国产亚洲欧美日韩精品| 亚洲愉拍一区二区精品| 亚洲一区毛片| 中文字幕乱妇无码AV在线| 99er精品视频| 国产高清不卡| 国产精品亚洲va在线观看| 亚洲成人高清无码| 国产乱子伦视频在线播放| 久久精品无码一区二区日韩免费| 久久久久88色偷偷| 国产精品无码久久久久AV| 99热亚洲精品6码| 亚洲国产精品久久久久秋霞影院| 亚洲欧美自拍一区| 成人在线综合| 亚洲精品成人福利在线电影| 国产精品久久久免费视频| 国产免费羞羞视频| 先锋资源久久| 久久久久国色AV免费观看性色| 一级毛片在线直接观看| WWW丫丫国产成人精品| 夜精品a一区二区三区| 亚洲热线99精品视频| 好吊色国产欧美日韩免费观看| 在线日本国产成人免费的| 亚洲无线国产观看| 婷婷亚洲视频| 一本久道久综合久久鬼色| 国产精品污视频| 91精品在线视频观看| 2021无码专区人妻系列日韩| av在线5g无码天天| 就去吻亚洲精品国产欧美| 五月婷婷综合色| 天堂在线亚洲| 国产成人综合亚洲网址| 深爱婷婷激情网| 国产裸舞福利在线视频合集| 99热这里只有精品免费| 日韩精品专区免费无码aⅴ| 国产午夜人做人免费视频中文 | 天堂成人在线| 婷婷色在线视频| 91精品情国产情侣高潮对白蜜| 国产成人精品男人的天堂下载| 国产视频一区二区在线观看| 婷婷激情亚洲| 国产成人一区免费观看 | av一区二区人妻无码|