翟嚴


為適應培養(yǎng)學生創(chuàng)新能力的教學目標,我們要有一套科學教法以適應新課程改革需要。本文就改進課堂教法,以優(yōu)化課堂教學談談自己的一些看法。
1. 情景導入新課
如在初三學習了圓柱有關知識而要學習勾股定理時,我課前提出一個問題:如下左圖,有一只壁虎A晚上鍛煉回來,又累又餓,突然發(fā)現(xiàn)離它不遠處有一個圓柱形盒子上底邊緣有一只蚊子B,為了盡快解決饑餓,它如何走路線才最短?
學生可能出現(xiàn)這樣一些想法:沿著底部邊緣爬到C處,再沿母線爬到B處;大部分同學認為由壁虎A位置沿側面直接爬到蚊子B處;還有其它想法。究竟哪個正確,又如何說明它的正確性,我們教師必須找出一個讓大家信服的理由。適當引導,嘗試將圓柱展開(如上右圖),尋求最短路線。而這恰好是圓柱展開圖知識及勾股定理引入。這樣既復習了圓柱展開圖知識,又激起學生對勾股定理求知欲,問題才能迎刃而解,從而產(chǎn)生濃厚學習興趣。
2. 教材聯(lián)系生活實際
如現(xiàn)初一教材在冪的運算中有“讀一讀,估計100萬粒大米質量”的例題。有位老師把其改成下面故事:古時候,有一個財主的一個傭人特別聰明,他為財主做了很多工作。有一次,財主高興起來就表示滿足傭人一個要求。傭人說:“就在收帳簿上放一些米吧,第1格放1粒米,第2格放2粒米,第3格放4粒米,然后依次放8、16、32……,一直放到第64格?!必斨髀牶蟠笮Γ澳阏媸歉F慣了,就要那么一點大米夠你吃幾天?”傭人說:“我怕你倉庫沒那么多大米,我只要第64格的大米?!蓖瑢W們,你能幫這位財主算一算第64格大約有多少粒大米?有多重?這樣的故事既激起學生學習興趣,又使學生知道運用測量估計100萬粒大米重量是解決問題的一個必然步驟。新教材及新教法趣味性強,又能引導用冪運算知識解決實際問題。這種教法既比單純計算的舊教法有效,又能聯(lián)系實際,用數(shù)學知識解決實際問題,達到學以致用目的。
3. 培養(yǎng)學生發(fā)散思維能力
如初一課本中有這么一道題:如圖:
……,第n個圖形需要多少條線段?
以往的教法是我們教師分析規(guī)律使學生明白即可;可這樣學生思維得不到發(fā)散,從而沒能創(chuàng)新求異。有位教師在教學時先和學生排擺魔方圖,讓學生先了解規(guī)律,然后讓學生自己觀察思考上面圖形,就發(fā)現(xiàn)學生有如下幾種方法:
因為第1個圖形的三角形需要3條線段,以后每增加一個三角形就需要增加線段2條,即為:
三角形個數(shù) 線段條數(shù)
1 3
2 3+2
3 3+2+2
…… ……
所以第n個圖形需要線段條數(shù)為3+2(n–1)。
也有同學作如下分析:
三角形個數(shù) 線段條數(shù)
1 1+2
2 1+2+2
3 1+2+2+2
…… ……
所以第n個圖形需要線段條數(shù)為1+2n。
還有同學分析如下:因為每個三角形需3條線段,所以第n個圖形原本應需要線段3n條,但從第二個圖形起每兩個三角形之間可以省一條線段,總共可省n–1條線段,因此第n個圖形需線段條數(shù)為3n-(n-1)。
以上學生思維各異,但能從不同角度分析問題,找出解決方案。所以我們教學的著力點就是培養(yǎng)學生獨立思考的習慣,培養(yǎng)發(fā)散思維,樹立創(chuàng)新意識,形成創(chuàng)新能力。
4. 課堂考查
如我校一位教師引導學生探究出韋達定理后,給學生布置了這樣一道題:
小華與小麗由于邊說話邊做同一道題目,小華看錯了一元二次方程一次項系數(shù),解得x1=2,x2=3;小麗看錯了常數(shù)項,解得x1=6,x2=1;若方程二次項系數(shù)為1,你能否知道原方程正確答案?
這位老師以問題形式間接教育學生學習態(tài)度,還以問題形式激發(fā)學生探究運用韋達定理解決實際問題。這位老師把學生置于知識發(fā)現(xiàn)者、探究者位置上,引導學生主動獨立地探究,這樣就能培養(yǎng)學生逆向思維意識與解決問題能力。所以我們教師要對以往傳授灌輸式課堂教學方法進行改進,以優(yōu)化課堂教學效果。
責任編輯潘孟良