劉阿倩,王 洋,林志強,張亞粉,田喜鳳,余 源
·實驗研究·
雙氫青蒿素對C2株藍氏賈第鞭毛蟲Delta giardin抑制作用的研究
劉阿倩,王 洋,林志強,張亞粉,田喜鳳,余 源
目的 建立實時熒光定量RT-PCR( real- time quantitative, RT- PCR)檢測C2株藍氏賈第鞭毛蟲(Giardialamblia)Delta giardin基因mRNA表達量的方法,分析雙氫青蒿素(Dihydroartemisinin, DHA)對體外C2株藍氏賈第鞭毛蟲Delta giardin基因mRNA表達水平的影響。方法 分別采用100 μg/mL、200 μg/mL的雙氫青蒿素改良型TYI-S-33培養基培養C2株藍氏賈第鞭毛蟲,以不含藥物組作為陰性對照,分別培養2 h、4 h、8 h、12 h,提取總RNA,逆轉錄合成cDNA,實時熒光定量PCR檢測Delta giardin基因mRNA表達情況。結果 100 μg/mL雙氫青蒿素培養2 h、4 h、8 h、12 h后,Delta giardin基因mRNA相對表達量分別為0.44、0.26、0.25、0.02;200 μg/mL雙氫青蒿素培養2 h、4 h、8 h、12 h后,Delta giardin基因mRNA相對表達量分別為0.30,0.26,0.11,0.02。藥物對照組中C2株藍氏賈第鞭毛蟲Delta giardin基因mRNA表達量明顯低于陰性對照組。結論 雙氫青蒿素對C2株藍氏賈第鞭毛蟲Delta giardin基因mRNA的表達具有明顯的抑制作用,提示雙氫青蒿素對藍氏賈第鞭毛蟲具有明顯的防治效果。
C2株藍氏賈第鞭毛蟲; 雙氫青蒿素; 實時熒光定量RT-PCR; Delta giardin
藍氏賈第鞭毛蟲(Giardialamblia,簡稱賈第蟲)是一種世界性分布的胃腸道寄生蟲,主要寄生于人和多種哺乳動物的小腸內并引起以腹瀉為主要癥狀的藍氏賈第鞭毛蟲病(giardiasis, 簡稱賈第蟲病)[1]。賈第蟲雙核、具有鞭毛,地理分布廣泛,有多種動物宿主,因此可通過糞便、被污染的水源、食物進行傳播。本病已被列為全世界危害人類健康的十種主要寄生蟲病之一,在發達國家和發展中國家均有廣泛流行[2-5]。有研究表明藍氏賈第鞭毛蟲能夠通過其腹吸盤吸附于宿主腸上皮細胞,是其致病的關鍵因素。Crossley和Holberton[6-7]首次提出賈第素是賈第蟲細胞骨架的特有成分,主要分為4大類, 即α、β、γ和δ賈第素[8-10]。腹吸盤的主要成分包括骨架蛋白,因此,賈第蟲的骨架結構與致病性密切相關,針對藍氏賈第鞭毛蟲骨架蛋白進行新藥物的研發對賈第蟲病的有效防治具有重要的意義。前期研究采用蛋白質組學技術觀察到雙氫青蒿素對體外培養的藍氏賈第鞭毛蟲滋養體蛋白質具有明顯的損傷作用,其中包括細胞骨架蛋白[11]。為了進一步研究雙氫青蒿素對藍氏賈第鞭毛蟲Delta giardin的抑制作用,本研究采用含有雙氫青蒿素的改良TYI-S-33培養基培養C2株藍氏賈第鞭毛蟲,實時熒光定量RT-PCR檢測雙氫青蒿素對C2株藍氏賈第鞭毛蟲Delta giardin的抑制作用。
1.1 材料 雙氫青蒿素粉劑(原藥批號010904)為北京豐臺科技園生物技術公司藤海寧女士惠贈;C2株藍氏賈第鞭毛蟲由本實驗室液氮保存;M-MLV 逆轉錄酶,RNase inhibitor,Random Primers購自Promega公司;dNTP,SYBR?Premix Ex TaqTMReal-Time PCR試劑盒購自TaKaRa(大連)公司;引物由生工生物工程(上海)公司合成;組織/細胞基因組RNA提取試劑盒購自Invitrogen;焦碳酸二乙酯(DEPC)購自上海生工生物技術有限公司。
1.2 方法
1.2.1 藍氏賈第鞭毛蟲復蘇培養 將液氮內凍存的C2株藍氏賈第鞭毛蟲復蘇,置含改良TYI-S-33培養基的4 mL硼酸硅培養管內,于37 ℃培養。48~72 h后,蟲體即呈對數生長期。選取蟲體生長旺盛的培養管,置4 ℃冰浴,15 min后取出,在雙手掌間多次滾搓培養管,使貼壁生長的蟲體完全自管壁脫落。用血球計數板計數蟲數,再用培養基將蟲液濃度調為6×106~10×106個滋養體/mL[12],傳代培養。
1.2.2 藥物培養 培養48 h后選取蟲體貼滿瓶壁的培養管,藥物組培養基內分別加入100 μg/mL 、200 μg/mL雙氫青蒿素,對照組培養基內不加藥;37 ℃分別培養2 h、4 h、8 h、12 h后,收集蟲體,用血球計數板計數蟲數,用培養基將蟲液濃度調至1×107個滋養體/mL;取1mL蟲液,用PBS(pH7.4)清洗3次,離心10 min(4 000 r/min),棄上清,留沉淀。
1.2.3 總RNA提取及cDNA的合成 離心分離的蟲體細胞中加入細胞裂解液Trizol(Invitrogen)1 mL,反復顛倒后迅速吸入經焦碳酸二乙酯(DEPC)處理過的eppendorf離心管中,按照說明書提取總RNA,紫外分光光度法鑒定總RNA的純度。
建立20 μL反轉錄體系:RNA模板,5 μL,M-MLV 1 μL,Random Primers(100 ng/μL) 1 μL,RNase inhibitor 1 μL,10 mmol/L dNTP 1 μL,5×反應緩沖液4 μL,DEPC水7 μL;反轉錄條件:70 ℃變性5 min,42 ℃反轉錄60 min,即得cDNA,-80 ℃保存備用。
1.2.4 引物設計 NCBI網站檢索藍氏賈第鞭毛蟲Delta giardin(XM_001707397.1)和GAPDH (XM_001704991.1)基因序列(http://www.ncbi.nlm.nih.gov/gene/5700349),采用Primer Premier 5軟件分別設計合成藍氏賈第鞭毛蟲Delta giardin(ATCC 50803)及GAPDH(內參基因)特異性引物 (表1)。

表1 Delta giardin和GAPDH引物序列
1.2.5 實時熒光定量PCR檢測Delta giardin基因mRNA的相對表達量 采用Corbett實時熒光定量PCR儀,分別以Delta giardinS/Delta giardinA; GAPDHS/GAPDHA為引物進行實時熒光定量PCR檢測。藥物培養組及陰性對照組每個樣品均做2個重復,以各組逆轉錄合成的cDNA作為模板,磷酸甘油醛脫氫酶基因(GAPDH)為內參基因,建立20 μL反應體系: 2×SYBR MIX 10 μL,cDNA 1 μL,Prime S 1 μL,Prime A 1 μL,DEPC H2O 7 μL,反應條件:95 ℃變性15 s,60 ℃復性15 s, 72 ℃延伸30 s。Delta Delta CT法分析檢測結果,確定Delta giardin基因mRNA的相對表達量。
2.1 總RNA提取結果 嚴格按照試劑盒操作說明進行,利用Trizol提取藍氏賈第鞭毛蟲總RNA,各組RNAA260nm/A280nm值均在1.8~2.0范圍內,總RNA提取質量符合實驗要求。
2.2 Real-Time PCR檢測結果 分別得到Delta giardin基因Real-time PCR擴增曲線、熔解曲線(圖1-2)和GAPDH基因Real-time PCR擴增曲線、熔解曲線(圖3-4),融解曲線只有單峰值, 排除了非特異性擴增。Delta Delta CT法分析各組Delta giardin基因mRNA的相對表達量。△循環閾值(cycle threshold, Ct) =樣品Ct均值-內參照Ct均值,△△Ct = △Ct-(隨機陰性對照樣品Ct均值-該樣品內參照Ct均值),以2-△△Ct表示樣品中目的基因初始cDNA相對表達量[13]。研究結果表明(表2),培養基內加入濃度為100 μg/mL的雙氫青蒿素,分別培養藍氏賈第鞭毛蟲2 h、4 h、8 h、12 h后,Delta giardin基因mRNA相對表達量為0.44,0.26,0.25,0.02;培養基內加入濃度為200 μg/mL的雙氫青蒿素,分別培養藍氏賈第鞭毛蟲2 h、4 h、8 h、12 h后,Delta giardin基因mRNA相對表達量為0.30,0.26,0.11,0.02。藥物組Delta giardin基因mRNA均低于對照組,表明雙氫青蒿素對C2株藍氏賈第鞭毛蟲Delta giardin基因表達具有明顯的抑制作用,抑制作用隨著藥物濃度的增高和作用時間的延長而增強。

1-2: DHA 200 μg/mL for 2 h; 3-4: DHA 200 μg/mL for 4 h; 5-6: DHA 200 μg/mL for 8 h; 7-8: DHA 200 μg/mL for 12 h; 9-10: DHA 100 μg/mL for 2 h; 11-12: DHA 100 μg/mL for 4 h; 13-14: DHA 100 μg/mL for 8 h; 15-16: DHA 100 μg/mL for 12 h; 17-18: Negative control.
圖1 Delta giardin mRNA Real-time PCR擴增曲線
Fig.1 Amplification curve of Delta giardin mRNA

1-2: DHA 200 μg/mL for 2 h; 3-4: DHA 200 μg/mL for 4 h; 5-6: DHA 200 μg/mL for 8 h; 7-8: DHA 200 μg/mL for 12 h; 9-10: DHA 100 μg/mL for 2 h; 11-12: DHA 100 μg/mL for 4 h; 13-14: DHA 100 μg/mL for 8 h; 15-16: DHA 100 μg/mL for 12 h; 17-18: Negative control.
圖2 Delta giardin mRNA Real-time PCR熔解曲線
Fig.2 Melting curve of Delta giardin mRNA

1-2: DHA 200 μg/mL for 2 h; 3-4: DHA 200 μg/mL for 4 h; 5-6: DHA 200 μg/mL for 8 h; 7-8: DHA 200 μg/mL for 12 h; 9-10: DHA 100 μg/mL for 2 h; 11-12: DHA 100 μg/mL for 4 h; 13-14: DHA 100 μg/mL for 8 h; 15-16: DHA 100 μg/mL for 12 h; 17-18: Negative control.
圖3 GAPDH mRNA Real-timePCR擴增曲線
Fig.3 Amplification curve of GAPDH mRNA

1-2: DHA 200 μg/mL for 2 h; 3-4: DHA 200 μg/mL for 4 h; 5-6: DHA 200 μg/mL for 8 h; 7-8: DHA 200 μg/mL for 12 h; 9-10: DHA 100 μg/mL for 2 h; 11-12: DHA 100 μg/mL for 4 h; 13-14: DHA 100 μg/mL for 8 h; 15-16: DHA 100 μg/mL for 12 h; 17-18: Negative control.
圖4 GAPDH mRNA Real-time PCR熔解曲線
Fig.4 Melting curve of GAPDH mRNA

表2 DHA作用后Delta giardin基因mRNA表達量分析結果
青蒿素(artemisinin)是從菊科蒿屬黃花蒿莖葉中提取的一種含過氧基團的倍半萜內酯, 經過人工化學修飾、改進后發展了多種衍生物,主要包括青蒿琥酯(artesunate) 、雙氫青蒿素(dihydroartemisinin)及蒿甲醚(artemether) 等[14]。雙氫青蒿素是青蒿素及其衍生物蒿甲醚和青蒿琥酯在體內的有效活性代謝產物,為廣譜抗寄生蟲藥物,對多種寄生性原蟲有良好的殺滅作用[15-16]。在抗瘧疾、弓形蟲、肺孢子蟲肺炎、腫瘤,以及調節免疫和抗孕等方面具有廣泛的應用[17-18]。
實時熒光定量PCR技術( real-time fluorescent quantitative PCR, FQ-PCR) 于1996年由美國Applied Biosystems公司推出,該技術在PCR反應體系中加入熒光基團,利用熒光信號積累實時監測整個PCR進程[19-20]。實時熒光定量RT-PCR ( real-time fluorescent quantitative reverse transcription-polymerase chain reaction, FQ RT-PCR )將實時熒光定量PCR與逆轉錄技術相結合,能夠實時檢測記錄PCR擴增產物的增加,從而準確檢測相應mRNA的含量[21-22]。
雖然有研究表明雙氫青蒿素對瘧原蟲、弓形蟲、血吸蟲、肺孢子蟲等多種寄生蟲均有顯著的損傷效果,但其作用機制鮮有報道,為了進一步研究其藥理機制,本研究采用實時熒光定量RT-PCR檢測雙氫青蒿素對C2株藍氏賈第鞭毛蟲Delta giardin的抑制作用。研究結果表明,雙氫青蒿素對藍氏賈第鞭毛蟲Delta giardin基因的表達具有明顯的抑制作用,抑制作用與藥物濃度和作用時間成正比。此結果與藍氏賈第鞭毛蟲骨架蛋白雙向電泳質譜結果一致[23]。藍氏賈第鞭毛蟲能夠通過其腹吸盤吸附于宿主腸上皮細胞,其骨架結構與致病性密切相關。Delta giardin是藍氏賈第鞭毛蟲骨架蛋白的主要成分,是其致病的關鍵因素,因此雙氫青蒿素對賈第蟲Delta giardin基因的抑制作用可能會影響藍氏賈第鞭毛蟲的感染過程,對藍氏賈第鞭毛蟲的防治起到一定的效果,本研究也為進一步闡明其藥理機制提供了有價值的參考資料。
[1]Adam RD. Biology ofGiardialamblia[J]. Clin Microbiol Rev, 2001, 14(3): 447-475.
[2]Gardner TB, Hill DR. Treatment of giardiasis[J]. Clin Microbiol Rev, 2001, 14(1): 114-128.
[3]Lu SQ. Domestic research ofGiardialamblia[J]. Acta Parasitologica Et Medica Entomologica Sinica, 1999, 6(4): 193-200. (in Chinese) 盧思奇.國內藍氏賈第鞭毛蟲研究[J].寄生蟲與醫學昆蟲報, 1999, 6(4): 193-200.
[4]Sandhu H, Mahajan RC, Ganguly NK. Flow cytometric assessment of the effect of drugs onGiardialambliatrophozoitesinvitro[J]. Mol Cell Biochem, 2004, 265: 151-160.
[5]Tian XF, Lu SQ. Cytoskeleton ofGiardialamblia[J]. World Chin J Digestol, 2005, 13(12): 1434-1436. (in Chinese) 田喜鳳, 盧思奇.藍氏賈第鞭毛蟲的細胞骨架[J].世界華人消化雜志, 2005, 13(12): 1434-1436.
[6]Holberton DV, Ward AP. Isolation of the cytoskeleton fromGiardia. Tubulin and a low-molecular-weight protein associated with microribbon structures[J]. J Cell Sci, 1981, 47: 139-166.
[7]Crossley R, Holberton DV. Characterization of proteins from the cytoskeleton ofGiardialamblia[J]. J Cell Sci, 1983, 59: 81-103.
[8]Kim J, Goo SY, Chung HJ, et al. Interaction of beta giardin with the Bop1 protein inGiardialamblia[J]. Parasitol Res, 2006, 98(2): 138-144. DOI: 10.1007/s00436-005-0040-8
[9]Jenkins MC, O'Brien CN, Murphy C, et al. Antibodies to the ventral disc protein delta-giardin preventinvitrobinding ofGiardialambliatrophozoites[J]. J Parasitol, 2009, 95(4): 895-899. DOI: 10.1645/GE-1851R.1
[10]Nohria A, Alonso RA, Peattie DA. Identification and characterization of gamma-giardin and the gamma-giardin gene fromGiardialamblia[J]. Mol Biochem Parasitol, 1992, 56: 27-37. DOI: 10.1016/0166-6851(92)90151-9
[11]Tian XF, Lu SQ, Liu YM, et al. Effect of dihydroartemisinin on ultra structure ofGiardiaLambliainvitro[J]. Chin J Parasitol Parasit Dis, 2005, 23(5): 292-295. (in Chinese) 田喜鳳,盧思奇,劉業民, 等.雙氫青蒿素對體外藍氏賈第鞭毛蟲的損傷[J].中國寄生蟲學與寄生蟲病雜志, 2005, 23(5): 292-295.
[12]He B, Liu GW, Cao L, et al.Invitroidentification of the cytoskeleton proteins ofGiardialambliausing a MS technique[J]. J Pathog Biol, 2010, 5(12): 898-900. (in Chinese) 何冰, 劉廣偉, 曹蕾,等.質譜技術鑒定體外藍氏賈第鞭毛蟲的細胞骨架蛋白[J].中國病原生物學雜志, 2010, 5(12): 898-900.
[13]Si JL, Qi YQ, Zhou CH, et al. Detection of peripheral blood human telomerase reverse transcriptase mRNA in colorectal cancer with real-time fluorescent quantitative RT-PCR and its clinical significance[J]. World Chin J Digestol, 2008, 16(36): 4067-4070. (in Chinese) 司君利,亓玉琴,周長宏,等.實時熒光定量RT-PCR檢測結直腸癌中外周血端粒酶逆轉錄酶mRNA的表達及其臨床意義[J]. 世界華人消化雜志, 2008, 16(36):4067-4070.
[14]Mu D, Zhang W, Chu D, et al. The role of calcium, P38M APK in dihydroartemisinin-induced apoptosis of lung cancer PC-14 cells[J]. Cancer Chemother Pharmacol, 2008, 61(4): 639-645. DOI: 10.1007/s00280-007-0517-5
[15]Li HJ, Wang W, Liang YS. Advances in research of dihydroartemisinin against parasitic diseases[J]. Chin J Schisto Ctrl, 2011, 23(4): 460-463. (in Chinese) 李洪軍, 汪偉, 梁幼生.雙氫青蒿素抗寄生蟲作用研究進展[J].中國血吸蟲病防治雜志, 2011, 23(4): 460-463.
[16]Xiang LX. Research progress of dihydroartemisinin[J]. Guangxi J Light Industry, 2010(3): 7-8. (in Chinese) 相麗欣.雙氫青蒿素研究進展[J].廣西輕工業, 2010(3): 7-8.
[17]Ru WW, Liang YS. Progress of research on artemisine against parasitic diseases[J]. Chin J Schisto Ctrl, 2006, 18(1): 78-80. (in Chinese) 茹煒煒, 梁幼生.青蒿素類藥物抗寄生蟲作用研究進展[J].中國血吸蟲病防治雜志, 2006, 18(1): 78-80.
[18]Li W, Shi CR. Research progress of Artemisinin[J]. China Pharm, 2003, 14(2): 118-119. (in Chinese) 李偉, 石崇榮.雙氫青蒿素研究進展[J].中國藥房, 2003, 14(2): 118-119.
[19]Ouyang SY, Yang D, Ouyang HS, et al. Real-time fluorescent quantitative PCR and application[J]. Chem Life, 2004, 24(1): 74-76. (in Chinese) 歐陽松應, 楊冬, 歐陽紅生, 等.實時熒光定量PCR技術及其應用[J].生命的化學, 2004, 24(1): 74-76.
[20]Zhao HY, Bao JF. The principle and application research progress of real-time fluorescent quantitative PCR[J]. Chin J Histochem Cytochem, 2007, 16(4): 492-497. (in Chinese) 趙煥英, 包金風.實時熒光定量PCR技術的原理及其應用研究進展[J].中國組織化學與細胞化學雜志, 2007, 16(4): 492-497.
[21]Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays[J]. J Mol Endocrinol, 2000, 25 (2): 169-193.
[22]Giulietti A, Overbergh L, Valckx D, et al. An overview of real-time quantitative PCR: applications to quantify cytokine gene expression[J]. Methods, 2001, 25(4): 386-401. DOI: 10.1006/meth.2001.1261
[23]Yu Y, Chen Y, Yang ZH, et al. Effects of dihydroartemisinin on protein ofGiardialambliatrophozoites[J]. Chin J Zoonoses, 2010, 26(11): 995-997. (in Chinese) 余源, 陳陽, 楊志宏, 等.雙氫青蒿素對藍氏賈第鞭毛蟲滋養體蛋白質的損傷[J].中國人獸共患病學報, 2010, 26 (11): 995-997.
Yu Yuan,Email:yuyuan5188@163.com
Dihydroartemisinin inhibition on Delta giardin in C2Giardialamblia
LIU A-qian,WANG Yang,LIN Zhi-qiang,ZHANG Ya-fen,TIAN Xi-feng,YU Yuan
(NorthChinaUniversityofScienceandTechnology,Tangshan063000,China)
We established real-time fluorescent quantitative reverse transcriptase polymerase chain reaction (RT-PCR) for determining the expression of Delta giardin mRNA to explore effects of dihydroartemisinin (DHA) on the expression level of Delta giardin mRNA in C2Giardialamblia.Giardialambliarespectively cultivated for 2, 4, 8, and 12 h respectively with modified TYI-S-33 medium which contained 100 μg/mL and 200 μg/mL DHA, while the negative control group performed in the same experimental condition without DHAs. All of the RNAs were extracted and cDNA were synthesized. The relative expressive quantity of Delta giardin mRNA was determined by real-time PCR and the results were 0.44, 0.26, 0.25, and 0.02 whenGiardialambliarespectively cultivated for 2 h, 4 h, 8 h, and 12 hours which contained 100 μg/mL DHA. The relative expression quantities of Delta giardin mRNA were 0.30, 0.26, 0.11, and 0.02 whenGiardialambliarespectively cultivated for 2 h, 4 h, 8 h, and 12 h which contained 200 μg/mL DHA. The expressive quantities of Delta giardin mRNA with DHA were significantly lower than that in the control group. It suggests that dihydroartemisinin has obvious inhibitory effects on the expression level of Delta giardin mRNA in C2Giardialamblia, and DHA has significant prevention and cure function to C2Giardialamblia.
C2Giardialamblia; dihydroartemisinin; real-time reverse transcription PCR; Delta giardin
國家自然科學基金(No. 31471954)、河北省青年科學基金(No. C2012401039)、河北聯合大學培養基金(No.GP201308)、唐山市科技支持計劃項目(No.12140209A-33)聯合資助
余源,Email:yuyuan5188@163.com
華北理工大學生命科學學院,唐山 063000
Supported by the National Natural Science Foundation of China (No. 31471954), the Youth Science Fund Project in Hebei Province (No. C2012401039), the Hebei United University Training Fund (No. GP201308), and the Scientific and Technological Support Projects from Tangshan (No. 12140209A-33)
10.3969/cjz.j.issn.1002-2694.2015.06.006
R382.2
A
1002-2694(2015)06-0522-05
2014-07-21;
2014-10-30