王雷 李壯志
徐州華鑫發電有限公司
摘要:通過對濕法煙氣脫硫工藝過程的分析和系統調試結果,總結出原煙氣中氧量、粉塵、溫度等參數的變化和工藝過程控制、設備運行方式的改變對煙氣脫硫效率的影響規律,對運行實踐有一定的指導意義。
1 前言
濕式石灰石-石膏煙氣脫硫(以下簡稱FGD)是目前世界上技術最成熟、實用業績最多、運行狀況最穩定的脫硫工藝,脫硫效率在90%以上,副產品石膏可回收利用。徐州華鑫發電有限公司采用石灰石-石膏濕法工藝,處理1、2號爐2×330 MW機組的全部燃煤煙氣,最大處理煙氣量1.0×106 m3/h(濕),脫硫率在95%以上,FGD出口SO2排放濃度<100 mg/m3,作為煙氣脫硫的副產品石膏,其純度>90%,含水率<10%。
濕法煙氣脫硫工藝涉及到一系列的化學和物理過程,脫硫效率取決于多種因素。在原料方面,工藝水品質、石灰石粉的純度和顆粒細度等直接影響脫硫化學反應活性;在工藝控制方面,石灰石粉的制漿濃度、石膏旋流站排出的廢水流量設定等都與脫硫率有關,而FGD關鍵設備的運行和控制方式將決定脫硫效果和終產物石膏的品質;機組原煙氣參數如溫度、SO2濃度、氧量、粉塵濃度等也不同程度地影響脫硫反應進程。
2 濕法脫硫工藝過程分析
FGD包括吸收塔、石灰石制漿系統、石膏脫水系統和廢水處理等部分,其中吸收塔是煙氣脫硫反應的關鍵部分。濕法煙氣脫硫工藝的主要原理是以石灰石漿液作為脫硫劑,在吸收塔(洗滌塔)內對含有SO2的煙氣進行噴淋洗滌,使SO2與漿液中的堿性物質發生化學反應生成CaSO3和CaSO4而將SO2去除。
在吸收塔內,通過氧化風機將空氣引入到漿液中,再經攪拌器攪拌使氧充分注入漿液,這樣既保證了被吸收的SO2與漿液反應后生成的HSO3-完全氧化成SO42-,又減少了漿液發生結垢的可能性,使石膏CaSO4·2H2O結晶析出,在吸收塔內停留一定時間后,通過石膏外排泵送至石膏旋流站。經旋流器分離的高濃度石膏漿液進入真空皮帶機脫水形成水分少于10%的石膏,低濃度的旋流溢流液則返回至吸收塔繼續反應或進入廢水處理系統。
從濕法煙氣脫硫工藝過程和化學反應歷程不難發現,提高煙氣與混合漿液的接觸反應時間、增加漿液循環量、增加氧量、控制吸收塔漿液合理的pH值等措施都將有利于SO2的吸收、脫硫率的提高和石膏的形成。
3 影響脫硫率的因素分析
濕法煙氣脫硫效率與原煙氣參數和設備運行方式等有直接關系,而且許多因素是共同作用的。華鑫發電公司1、2號機組燃煤平均含硫率為1.3%,進入吸收塔的煙氣中SO2濃度在1500 mg/m3(干)左右,由于煤種的變換,實際運行中SO2進口濃度在900 mg/m3~3500 mg/m3之間波動,脫硫率也不十分穩定,當原煙氣中SO2突然升高時,脫硫率會有所下降,但若能有效地控制設備運行方式,就能保證FGD有較高而穩定的脫硫率。
3.1 煙氣與脫硫劑接觸時間
煙氣進入吸收塔后,自下而上流動,與噴淋而下的石灰石漿液霧滴接觸反應,接觸時間越長,反應進行得越完全。煙氣與脫硫劑的接觸時間越長,脫硫率越高。
3.2 漿液循環量
新鮮的石灰石漿液噴淋下來后與煙氣接觸后,SO2等氣體與石灰石的反應并不完全,需要不斷地循環反應,從表1可以發現,運行3臺循環泵的脫硫率明顯高于只運行2臺的工況。原因是增加了漿液的循環量,也就加大了CaCO3與SO2的接觸反應機會,從而提高了SO2的去除率。此外,增加漿液的循環量,將促進混合漿液中的HSO3-氧化成SO42-,有利于石膏的形成。
3.3 吸收塔漿液pH值
煙氣中SO2與吸收塔漿液接觸后發生如下一些化學反應:
SO2+H2O=HSO3-+H+
CaCO3+H+=HCO3-+Ca2+
HSO3-+1/2O2=SO42-+H+
SO42-+Ca2++2H2O=CaSO4·2H2O
從以上反應歷程不難發現,高pH的漿液環境有利于SO2的吸收,而低pH則有助于Ca2+的析出,二者互相對立,因此選擇一合適的pH值對煙氣脫硫反應至關重要。
在一定范圍內隨著吸收塔漿液pH的升高,脫硫率一般也呈上升趨勢,因為高pH意味著漿液中有較多的CaCO3存在,對脫硫當然有益,但pH>5.8后脫硫率不會繼續升高,反而降低,原因是隨著H+濃度的降低,Ca2+的析出越來越困難,當pH=5.9時,漿液中CaCO3的含量達到2.98%,而CaSO4·2H2O含量也低于90%,顯然此時SO2與脫硫劑的反應不徹底,既浪費了石灰石,又降低了石膏的品質,pH再下降時,CaSO4·2H2O含量又回升,CaCO3則降低。因此,漿液pH值既不能太高又不能太低,一般情況下控制吸收塔漿液的pH在5.4~5.5之間,能使脫硫反應的Ca/S保持在設計值(1.02左右)內,獲得較為理想的脫硫率,同時又使漿液中CaCO3的含量低于1%。
3.4 氧量
O2參與煙氣脫硫的化學過程,使4HSO3-氧化為SO42-,接收二臺機組煙氣時,在煙氣量、SO2濃度、煙溫等參數基本恒定的情況下氧量對脫硫率的影響曲線,隨著煙氣中O2含量的增加,CaSO4·2H2O的形成加快,脫硫率也呈上升趨勢。當原煙氣中氧量一定時,可入為往吸收塔漿液中增加氧氣,所以多投運氧化風機可提高脫硫率。當煙氣中O2含量為6.0%時,運行2臺氧化風機比運行1臺氧化風機的脫硫率高出2%左右。
3.5 石膏漿液密度
隨著煙氣與脫硫劑反應的進行,吸收塔的漿液密度不斷升高,通過吸收塔漿液化學成分的取樣分析結果,當密度>1085 kg/m3時,混合漿液中Ca-CO3和CaSO4·2H2O的濃度已趨于飽和,CaSO4·2H2O對SO2的吸收有抑制作用,脫硫率會有所下降;而石膏漿液密度過低(<1100 kg/m3=時,說明漿液中CaSO4·2H2O的含量較低,CaCO3的相對含量升高,此時如果排出吸收塔,將導致石膏中Ca-CO3含量增高,品質降低,而且浪費了脫硫劑石灰石。因此運行中控制石膏漿液密度在一合適的范圍內(1130~1160 kg/m3),將有利于FGD的有效、經濟運行。
3.6 煙塵
原煙氣中的飛灰在一定程度上阻礙了SO2與脫硫劑的接觸,降低了石灰石中Ca2+的溶解速率,同時飛灰中不斷溶出的一些重金屬如Hg、Mg、Cd、Zn等離子會抑制Ca2+與HSO3-的反應。試驗證明,如果煙氣中粉塵含量持續超過200 mg/m3(干),則將使脫硫率下降1%~2%,并且石膏中CaSO4·2H2O的含量降低,白度減少,影響了品質。
3.7 煙氣溫度
實際運行過程中,機組負荷變化較頻繁,FGD進口煙溫也會隨之波動,對脫硫率有一定的影響。理論上進入吸收塔的煙氣溫度越低,越利于SO2氣體溶于漿液,形成HSO3-,所以高溫的原煙氣先經過氣-氣加熱器降溫后再進入吸收塔與脫硫劑接觸有利于SO2的吸收。實際運行結果也證實了這一點,在處理二臺機組煙氣、運行2、4號循環泵、進口煙氣SO2濃度和氧量基本不變的工況下,當進入吸收塔的煙溫為96℃時,脫硫率為92.1%;當煙溫升到103℃時,脫硫率已下降至84.8%,而接收一臺機組煙氣時煙溫對脫硫率的影響就更明顯了。
4 結論
4.1 進入吸收塔的原煙氣中O2含量高、粉塵濃度低、煙溫低等都對脫硫反應有利,當氧量一定時,增開一臺氧化風機能提高脫硫效率。
4.2 保持吸收塔漿液pH在5.4~5.5之間,可使FGD保持較好的脫硫效果和石膏品質,pH太高不利于Ca2+的析出和石灰石的充分利用,pH過低則影響SO2的吸收。
4.3 吸收塔漿液密度過高會降低脫硫率,過低時脫硫劑的利用不徹底,保持漿液密度在1130~1160kg/m3之間,可獲得較好的脫硫效果。
作者簡介:
王 雷 徐州華鑫發電有限公司(發電部)助理工程師。
李壯志 徐州華鑫發電有限公司(發電部)高級工。