張曉倩,劉少壯,綜述 胡三元,審校
(山東大學齊魯醫院,山東 濟南,250012)
目前,減重手術緩解糖尿病及改善重度肥胖的機制尚不明確,本文現對減重手術后腸道發生的適應性變化作一綜述。
腸道是最活躍的內分泌器官,分泌許多激素參與食物的消化與吸收。已經被接受、承認的兩個腸道激素是生長激素釋放肽(peptide YY,PYY)、胰高血糖素樣肽-1(glucagon-like peptide-1,GLP-1)。GLP-1 由末端回腸、結腸L 細胞分泌釋放到血液中,影響食物營養成分的攝入,調節食物介導的胰島素及胰高血糖素分泌,并通過胰島beta 細胞上的G 蛋白偶聯受體發揮抑制beta 細胞凋亡,促進beta 細胞增殖,改善beta細胞功能的作用[1],即腸-胰島軸。腸胰島軸的提出使我們重新認識了腸道與胰島間的關系。Salehi 等[2]在嚙齒類動物Roux-en-Y 胃旁路術(Roux-en-Y gastric bypass,RYGB)術后予以GLP-1 拮抗劑,發現胰島素的分泌作用減弱。目前,GLP-1 的類似物及激活劑的口服制劑已用于臨床治療糖尿病。PYY 可延遲胃排空、腸轉運,生理性調節食欲,抑制食物的攝取,從而降低體重。低劑量鏈脲佐菌素(streptozocin,STZ)誘導的2 型糖尿病大鼠行減重手術后,GLP-1 與PYY 顯著升高,并且先于體重的下降。有研究指出,用藥物誘導體重降低后,血清GLP-1 濃度無升高,有的甚至下降[3],血清PYY 濃度也未升高[4]。這表明減重手術后GLP-1、PYY 的升高不依賴于體重的下降。為什么術后GLP-1、PYY 升高?1999年,Mason 提出了遠端回腸假說,認為減重手術改變了腸道原有的解剖關系,未消化的或消化不完全的食物提早與回結腸接觸,刺激回結腸L 細胞分泌GLP-1 增加,即后腸假說。有學者將GLP-1、PYY 與膽汁酸聯系起來,對肥胖患者[5]、肥胖嚙齒類動物[6]予以膽汁酸螯合劑,發現血清中GLP-1 水平上升,PYY 濃度有下降[7]、無變化[8]及上升(在大鼠)[9]三種情況,膽汁酸螯合劑降低腸道膽固醇的吸收,利于膽汁酸從腸道排出,而吸收不良型減重手術升高膽汁酸,兩者都可升高GLP-1,可能的解釋是,腸道中膽汁酸流量的增加升高了GLP-1。減重手術后PYY 升高,而予以膽汁酸螯合劑后,PYY 濃度變化不定,腸道膽汁酸流量也許與PYY 濃度的變化有關。已經證明在體外膽汁酸可刺激GLP-1 的釋放[10]。也有學者認為GLP-1 可通過血腦屏障,減重手術后,大腦中高水平的GLP-1 激活迷走神經傳導信號,并刺激胃腸-腦驅動系統,降低糖尿病與肥胖癥患者的血糖水平[11]。
腸道中的膽汁酸具有促進脂肪消化吸收、防止膽道結石生成的作用,還具有抗微生物的作用,防止腸道細菌過度生長及菌群移位。與正常人相比,病態肥胖患者餐后膽汁排出減少[12],但血清膽汁酸濃度較正常人高[13]。減重手術后,血清膽汁酸水平有升高[14]、降低[15]、不變[16]三種情況。腸道內的膽汁酸通過TGR-5 途徑及法尼酯X 受體(farnesoid X receptor,FXR)途徑發揮生理作用[17]。在體外無FXR 的條件下實驗,證明了膽汁酸可激活細胞膜G 蛋白偶聯受體—TGR-5,刺激腸道GLP-1 的分泌[18]。因此,回腸中游離膽汁酸的增加,激活了TGR-5,從而提高了GLP-1 的水平,改善胰島beta 細胞功能。FXR 在胃腸道細胞的配體是成纖維細胞成長因子(fibroblast growth factor,FGF)(人類是FGF-19,嚙齒類動物是FGF-15)。在腸道游離膽汁酸結合FXR,激活FGF-19,然后FGF-19 激活肝臟細胞膽汁酸合成的限速酶膽固醇7α 羥化酶(cholesterol 7α-hydroxylase,CYP7A1),產生膽汁酸,這是一條膽汁酸合成增加的正反饋途徑。FGF-19 也許能增強線粒體活性,改善胰島素抵抗[19]。最近已證明FGF-19 以一種不依賴于胰島素的方式改善糖代謝[20]。糖尿病患者FGF-19 降低,RYGB 后FGF-19 的表達及膽汁酸的產生增加[21]。另一方面,一些數據表明RYGB 后FGF-19 不增加[22]。有趣的是,FGF-19 在服用膽酸螯合劑后減少,而在口服膽汁酸溶劑后增加[23]。
近年,對減重手術后腸道菌群改變的研究主要集中在擬桿菌、厚壁菌門及變形菌。對肥胖受試者進行的研究已經證實,腸道菌群的組成成分發生了變化,擬桿菌減少,厚壁菌成比例的增加。厚壁菌門與擬桿菌比例在肥胖個體增加[24],藥物減輕體重后比例下降[25]。在RYGB 術后,厚壁菌門與擬桿菌比例下降[26],此外,有研究顯示RYGB 后變形菌增加[27]。RYGB 可降低厚壁菌菌群在總種群中的比例,并增加γ-變形菌的比例[28],有證據表明,宿主與腸道細菌之間的相互作用可通過細菌代謝物來實現,如短鏈脂肪酸或微生物外膜的脂多糖[29]。在胃腸結構重構引起的代謝改善中,微生物群的變化起關鍵作用。將RYGB 術后的小鼠腸道菌群轉移到非手術操作處理的無菌小鼠體內,無菌小鼠體重下降,肥胖減輕[30]。將假手術操作的小鼠腸道細菌移植給無菌肥胖小鼠,體重未發生變化。術后腸道菌群的改變,與減重手術對膽汁酸水平及FXR 信號的影響有關。FXR 信號在廣泛的腸道功能中起重要作用,腸道菌群是其中一個靶點[29]。在FXR 基因敲除小鼠袖狀胃切除術后,腸道菌群的改變被抑制[31]。FXR 能通過改變血清膽汁酸的水平,間接影響腸道細菌的組成比例。但腸道細菌不是膽汁酸的被動接受者,也可通過干預多種膽汁酸降解途徑影響膽汁酸水平[32]。很重要的一點是,我們不知道減重手術后,腸道菌群的改變引起了膽汁酸的改變,還是膽汁酸的改變引起了腸道菌群的變化。
近年的研究對腸道有一個新的功能描述,即門靜脈葡萄糖傳感調節饑餓感。門靜脈有血糖感受器,可將信號通過腸道神經通路傳導至下丘腦,下丘腦發出信號調節食欲及胰島素敏感性[33]。Rajas 等[34]研究發現,以前認為的只在肝臟、腎臟表達的糖異生關鍵酶葡萄糖-6-磷酸酶(glucose-6-phosphatase,G-6-P)基因在小腸也有表達。表明小腸也可進行糖異生。小腸能通過適當的糖異生作用促進內源性葡萄糖生成。GK 大鼠十二指腸空腸旁路術(duodenal-jejunal bypass,DJB)后,腸道糖異生關鍵酶G-6-P 和磷酸烯醇式丙酮酸羧激酶上調,在肝臟這兩個酶的表達下調[35]。有學者指出,胃旁路術后,食物迅速進入遠端小腸,此舉可激活腸道糖異生的酶,增加腸道血糖濃度,門靜脈的迷走神經將血糖濃度信號傳遞給大腦,從而抑制肝糖輸出,提高葡萄糖穩態[36],此現象在空腹、胰島素缺乏的情況下表現更甚[37]。胃腸吻合術后的小鼠,腸道糖異生較胃束帶術后的小鼠活躍[38]。表明腸道有營養感受機制,可隨腸腔里的營養物質來調節腸糖異生。予以門靜脈感受血糖濃度的受體葡萄糖轉運體(glucose transporter 2,GLUT-2)[39]基因敲除的小鼠[38]及門靜脈去神經的小鼠行胃腸吻合術后,腸糖異生的增強作用被消除,這表明腸異生可被視為大腦控制調節葡萄糖和能量穩態的一個關鍵信號[36]。Hayes 等[40]通過檢測空腹狀態下的28 位患者(8 位糖尿病患者,20 位非糖尿病患者)RYGB 術前及術后6 h 門靜脈與中心靜脈血血糖,發現術前術后糖尿病患者血糖無顯著差異,說明小腸糖異生不能解釋RYGB 緩解的糖尿病。
小腸不但由豐富的自主神經系統(autonomic nerves system,ANS)的神經支配,也有自己的腸神經系統(enteric nervous system,ENS),這種獨立運作的神經系統是由神經回路控制腸道的運動功能、血流量、黏膜運輸與調節免疫、內分泌功能。此ENS 跨越胃腸道的肌間及黏膜下神經叢[41]。已證實了腦到腸道傳入、傳出神經是迷走神經,肥胖患者迷走神經活性異常[42]。Gautron 等[43]試圖了解手術對迷走神經的影響,他們用一種記憶蛋白標記小鼠的胃腸道迷走神經,RYGB術后,用免疫組化觀察此小鼠的腸道迷走神經的變化,結果表明術后胃腸吻合部位的迷走神經丟失,纖維形態變化,而肝臟、其他部位腸道的迷走神經支配正常。迷走神經纖維形態顯示異常主要在胃肌間神經叢,包括軸突腫脹與神經節前纖維終端形態異常。這種重構的生理意義是未知的。在大鼠RYGB 中,保留迷走神經較切除迷走神經獲得更少的食物攝入量、更成功的減肥[44]。臨床研究表明,迷走神經感覺張力的閾值與RYGB 術后食物量的攝取呈負相關關系[45]。在內分泌調節方面,腸道將當前的營養狀況告知大腦,一方面調節腸道分泌細胞分泌腸肽、膽囊收縮素(cholecystokinin,CCK)和GLP-1,抑制肝糖異生;另一方面調節腸道FGF-19,繼而調節膽汁酸與GLP-1。反過來,這些激素中的某些激素通過腸道的迷走神經反饋給中樞神經系統(central nervous system,CNS)負反饋調節它們的分泌;也可以直接通過血腦屏障,反饋調節大腦的活動[46]。Hao 等[47]指出,迷走神經的腹腔分支特異性地支配腸道的具體手術部位,完整的腹腔支可減少RYGB 術后早期的體重下降。這些數據表明,手術療效的成功需要完整的神經支配。
減重手術有效且持續的降低體重及改善糖代謝作用的機制仍不完全清楚。目前對其機制的解釋只能圍繞過去的框架去理解,即機械的限制食物攝取與營養吸收不良的基本原理。新的機制框架須著眼于將手術進程中的生理系統及對體重、新陳代謝起作用的分子信號通路聯系起來理解。肥胖、2 型糖尿病仍較為流行,現代減重手術是安全、可靠的,可有效減輕體重、緩解胰島素抵抗。但是,仍需要更多的機制研究工作。減重手術不僅是一種有效的治療手段,而且可通過對其機制的研究更深入的了解代謝性疾病的病理生理,從而提供一種非侵入性的方式治療疾病。
[1]Baggio LL,Drucker DJ.Biology of incretins:GLP-1 and GIP[J].Gastroenterology,2007,132(6):2131-2157.
[2]Salehi M,Prigeon RL,D'Alessio DA.Gastric bypass surgery enhances glucagon-like peptide 1-stimulated postprandial insulin secretion in humans[J].Diabetes,2011,60(9):2308-2314.
[3]Yip S,Signal M,Smith G,et al.Lower glycemic fluctuations early after bariatric surgery partially explained by caloric restriction[J].Obes Surg,2014,24(1):62-70.
[4]Hill BR,De Souza MJ,Wagstaff DA,et al.The impact of weight loss on the 24-h profile of circulating peptide YY and its association with 24-h ghrelin in normal weight premenopausal women[J].Peptides,2013,49:81-90.
[5]Smushkin G,Sathananthan M,Piccinini F,et al.The effect of a bile acid sequestrant on glucose metabolism in subjects with type 2 diabetes[J].Diabetes,2013,62(4):1094-1101.
[6]Potthoff MJ,Potts A,He T,et al.Colesevelam suppresses hepatic glycogenolysis by TGR5-mediated induction of GLP-1 action in DIO mice[J].Am J Physiol Gastrointest Liver Physiol,2013,304(4):G371-380.
[7]Rigamonti AE,Resnik M,Compri E,et al.The cholestyramine-induced decrease of PYY postprandial response is negatively correlated with fat mass in obese women[J].Horm Metab Res,2011,43(8):569-573.
[8]Chen L,McNulty J,Anderson D,et al. Cholestyramine reverses hyperglycemia and enhances glucose-stimulated glucagon-like peptide 1 release in Zucker diabetic fatty rats[J].J Pharmacol Exp Ther,2010,334(1):164-170.
[9]Marina AL,Utzschneider KM,Wright LA,et al.Colesevelam improves oral but not intravenous glucose tolerance by a mechanism independent of insulin sensitivity and β-cell function[J].Diabetes Care,2012,35(5):1119-1125.
[10]Katsuma S,Hirasawa A,Tsujimoto G.Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1[J].Biochem Biophys Res Commun,2005,329(1):386-390.
[11]Breen DM,Rasmussen BA,C?té CD,et al.Nutrient-sensing mechanisms in the gut as therapeutic targets for diabetes[J].Diabetes,2013,62(9):3005-3013.
[12]Glicksman C,Pournaras DJ,Wright M,et al.Postprandial plasma bile acid responses in normal weight and obese subjects[J].Ann Clin Biochem,2010,47(Pt 5):482-484.
[13]Halmy L,Fehér T,Steczek K,et al.High serum bile acid level in obesity:its decrease during and after total fasting[J].Acta Med Hung,1986,43(1):55-58.
[14]Nakatani H,Kasama K,Oshiro T,et al.Serum bile acid along with plasma incretins and serum high-molecular weight adiponectin levels are increased after bariatric surgery[J].Metabolism,2009,58(10):1400-1407.
[15]Kohli R,Bradley D,Setchell KD,et al.Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids[J].J Clin Endocrinol Metab,2013,98(4):E708-712.
[16]Scholtz S,Miras AD,Chhina N,et al.Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding[J].Gut,2014,63(6):891-902.
[17]Lefebvre P,Cariou B,Lien F,et al.Role of bile acids and bile acid receptors in metabolic regulation[J].Physiol Rev,2009,89(1):147-191.
[18]Kreymann B,Williams G,Ghatei MA,et al.Glucagon-like peptide-1 7-36:a physiological incretin in man[J].Lancet,1987,2(8571):1300-1304.
[19]Schaap FG,Trauner M,Jansen PL. Bile acid receptors as targets for drug development[J]. Nat Rev Gastroenterol Hepatol,2014,11(1):55-67.
[20]Tomlinson E,Fu L,John L,et al.Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity[J].Endocrinology,2002,143(5):1741-1747.
[21]Kir S,Beddow SA,Samuel VT,et al.FGF19 as a postprandial,insulin-independent activator of hepatic protein and glycogen synthesis[J].Science,2011,331(6024):1621-1624.
[22]Pournaras DJ,Glicksman C,Vincent RP,et al.The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control[J].Endocrinology,2012,153(8):3613-3619.
[23]Patti ME,Houten SM,Bianco AC,et al.Serum bile acids are higher in humans with prior gastric bypass:potential contribution to improved glucose and lipid metabolism[J].Obesity (Silver Spring),2009,17(9):1671-1677.
[24]Balamurugan R,George G,Kabeerdoss J,et al.Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children[J].Br J Nutr,2010,103(3):335-338.
[25]Furet JP,Kong LC,Tap J,et al.Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss:links with metabolic and low-grade inflammation markers[J].Diabetes,2010,59(12):3049-3057.
[26]Zhang H,DiBaise JK,Zuccolo A,et al.Human gut microbiota in obesity and after gastric bypass[J].Proc Natl Acad Sci U S A,2009,106(7):2365-2370.
[27]Graessler J,Qin Y,Zhong H,et al.Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes:correlation with inflammatory and metabolic parameters[J].Pharmacogenomics J,2013,13(6):514-522.
[28]Osto M,Abegg K,Bueter M,et al.Roux-en-Y gastric bypass surgery in rats alters gut microbiota profile along the intestine[J].Physiol Behav,2013,119:92-96.
[29]Liou AP,Paziuk M,Luevano JM Jr,et al.Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity[J].Sci Transl Med,2013,5(178):178ra41.
[30]Cani PD,Geurts L,Matamoros S,et al. Glucose metabolism:focus on gut microbiota,the endocannabinoid system and beyond[J].Diabetes Metab,2014,40(4):246-257.
[31]Sayin SI,Wahlstr?m A,Felin J,et al.Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid,a naturally occurring FXR antagonist[J].Cell Metab,2013,17(2):225-235.
[32]Ryan KK,Tremaroli V,Clemmensen C,et al.FXR is a molecular target for the effects of vertical sleeve gastrectomy[J].Nature,2014,509(7499):183-188.
[33]Mithieux G.Influence of diabetes surgery on a gut-brain-liver axis regulating food intake and internal glucose production[J].Nutr Hosp,2013,28 Suppl 2:109-114.
[34]Rajas F,Bruni N,Montano S,et al.The glucose-6 phosphatase gene is expressed in human and rat small intestine:regulation of expression in fasted and diabetic rats[J].Gastroenterology,1999,117(1):132-139.
[35]Sun D,Wang K,Yan Z,et al.Duodenal-jejunal bypass surgery up-regulates the expression of the hepatic insulin signaling proteins and the key regulatory enzymes of intestinal gluconeogenesis in diabetic Goto-Kakizaki rats[J].Obes Surg,2013,23(11):1734-1742.
[36]Mithieux G.A novel function of intestinal gluconeogenesis:central signaling in glucose and energy homeostasis[J].Nutrition,2009,25(9):881-884.
[37]Croset M,Rajas F,Zitoun C,et al.Rat small intestine is an insulin-sensitive gluconeogenic organ[J].Diabetes,2001,50(4):740-746.
[38]Troy S,Soty M,Ribeiro L,et al.Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice[J].Cell Metab,2008,8(3):201-211.
[39]Burcelin R,Dolci W,Thorens B.Glucose sensing by the hepatoportal sensor is GLUT2-dependent:in vivo analysis in GLUT2-null mice[J].Diabetes,2000,49(10):1643-1648.
[40]Hayes MT,Foo J,Besic V,et al.Is intestinal gluconeogenesis a key factor in the early changes in glucose homeostasis following gastric bypass?[J].Obes Surg,2011,21(6):759-762.
[41]Bitar KN,Raghavan S,Zakhem E.Tissue engineering in the gut:developments in neuromusculature[J].Gastroenterology,2014,146(7):1614-1624.
[42]de Lartigue G,Barbier de la Serre C,Espero E,et al.Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons[J].Am J Physiol Endocrinol Metab,2011,301(1):E187-195.
[43]Gautron L,Zechner JF,Aguirre V.Vagal innervation patterns following Roux-en-Y gastric bypass in the mouse[J].Int J Obes(Lond),2013,37(12):1603-1607.
[44]Bueter M,L?wenstein C,Ashrafian H,et al.Vagal sparing surgical technique but not stoma size affects body weight loss in rodent model of gastric bypass[J].Obes Surg,2010,20(5):616-622.
[45]Bj?rklund P,Laurenius A,Een E,et al. Is the Roux limb a determinant for meal size after gastric bypass surgery?[J]. Obes Surg,2010,20(10):1408-1414.
[46]Breen DM,Rasmussen BA,C?té CD,et al.Nutrient-sensing mechanisms in the gut as therapeutic targets for diabetes[J].Diabetes,2013,62(9):3005-3013.
[47]Hao Z,Townsend RL,Mumphrey MB,et al.Vagal innervation of intestine contributes to weight loss After Roux-en-Y gastric bypass surgery in rats[J].Obes Surg,2014,24(12):2145-2151.