謝雪欽, 楊向瑩, 高 靜, 梁 爽, 康西西,張 巖, 王小晉, 許美玲, 王 靜, 張 捷*
(1.廈門市產品質量監督檢驗院,福建 廈門361004;2.北京出入境檢驗檢疫局,北京100026;3.長春理工大學化學與環境工程學院,吉林 長春130123;4.河北省食品檢驗研究院,河北 石家莊050091;5.淮安出入境檢驗檢疫局,江蘇 淮安223001;6.臨沂出入境檢驗檢疫局,山東 臨沂276034;7.威海出入境檢驗檢疫局,山東 威海264205)
近紅外熒光探針及其在免疫分析中的應用
謝雪欽1, 楊向瑩2, 高 靜1, 梁 爽3, 康西西2,張 巖4, 王小晉5, 許美玲6, 王 靜7, 張 捷*2
(1.廈門市產品質量監督檢驗院,福建 廈門361004;2.北京出入境檢驗檢疫局,北京100026;3.長春理工大學化學與環境工程學院,吉林 長春130123;4.河北省食品檢驗研究院,河北 石家莊050091;5.淮安出入境檢驗檢疫局,江蘇 淮安223001;6.臨沂出入境檢驗檢疫局,山東 臨沂276034;7.威海出入境檢驗檢疫局,山東 威海264205)
綜合歸納了有機熒光分子、量子點、稀土配合物及單壁碳納米管共4類重要近紅外熒光標記探針的性質、特征,及其在光學性能改進、信號增強等方面的最新發展,分析評述了其在環境污染物及臨床診斷標志分子免疫分析中的應用,展望了基于該類探針的免疫層析法在食源性致病菌快速檢測中的應用潛能。相對于發射光光譜位于紫外及可見光區的信號分子,近紅外熒光探針因其具有信噪比高、組織穿透力強、對基體損傷小等突出的優勢,而在生物分析領域備受矚目。隨著化學合成技術的不斷發展及新型熒光材料的持續發掘,近年來近紅外熒光探針日益豐富,并在無損分析、免疫檢測和生物造影等領域被廣泛應用。
近紅外熒光探針;有機熒光分子;量子點;稀土配合物;單壁碳納米管;環境污染物;臨床診斷標志分子;免疫分析
由于膠體金、酶等基于顏色信號的標記探針檢測靈敏度有限,而電化學信號生成型探針則價格昂貴、操作繁瑣,且難以真正實現一步法檢測,熒光探針已成為當前最流行的信號分子,在生物分析各領域得到廣泛應用[1]。相對于熒光光譜位于紫外及可見光區的標記探針,發射光譜位于近紅外區(波長為650~1 100 nm)的近紅外熒光探針(Near Infrared Fluorescent Probes,NIFPs),因其高信噪比及由此保障的理想檢測靈敏度[2]而在分析領域備受矚目。首先,生物基體極少在近紅外光譜區自發熒光,使得基于NIFPs標記的分析檢測免受背景熒光干擾;其次,因散射光強度與波長的四次方成反比,發射光位于長波區的NIFPs受其干擾小。對生物組織穿透力強且損傷小是NIFPs的又一大優勢,使其在無損檢測[3]及生物造影[4]諸方面得到廣泛應用。
近年來,隨著探針合成研究的不斷推進及新型熒光材料的持續發掘,NIFPs種類日益豐富,根據其性質可分為有機染料、量子點、稀土配合物及單壁碳納米管4大類[5]。
1.1 近紅外熒光染料
盡管形式多樣的新型NIFPs被不斷合成,傳統有機熒光染料仍是當前近紅外熒光探針的主流。諸如五甲川等菁類、羅丹明等呫噸類、耐爾藍等噻嗪類有機染料,它們被廣泛開發為近紅外熒光探針,其中以菁染料因良好的生物相容性而最受青睞[6]。近期,Zhao和Carreira[7]還合成了一類具有優越光物理性狀的新型近紅外熒光染料氮雜氟硼二吡咯(aza-BODIPY),此后Lee等[8]使用一種被稱為DOFLA (diversity-oriented fluorescence library approach)的方法對其進行進一步的改進和衍生,獲得了40余種物化性狀優良的NIFPs,其中AZA396較BodipyFl的光穩定性提高了60倍。
除了不斷致力于新型近紅外有機探針的合成,研究者還關注傳統近紅外熒光染料水溶性、量子產率、化學及光穩定性、生物相容性等關鍵性狀的改進,使其更好地應用于生物分析[9]。如染料或染料結合物的聚集會導致熒光嚴重猝滅[10],許多研究圍繞改良染料水溶性而展開。自1993年首次被Waggoner等[11]發現并報道,在芳香環上連接磺酸鹽基團可有效增加NIFPs水溶性,此結論亦被Cheng等[12]證實。當前Amersham生物科學公司出品的知名商品化近紅外有機分子Cy5.5和Cy7均為磺酸鹽吲哚菁染料結構。此外有研究表明,理想的水溶性也可通過將疏水染料包被于脂質體表面親水磷脂單層而實現[13]。為了有效提高染料的熒光強度以測定痕量靶標分析物,研究者還不斷發掘高效信號擴增策略。如將大量熒光染料裹入納米顆粒,以形成更高熒光強度的近紅外納米微粒探針,這已被廣泛證實可有效提高檢測信號強度,同時改進標記分子的化學和光穩定性[13-14]。另外,基于金屬納米結構的表面等離子體共振,亦可顯著提高近紅外熒光染料的熒光強度。如研究表明,通過使用銀島膜(silverisland films)[15]或金納米外殼[16]等粗糙金屬表面,可分別提高吲哚菁綠的信號強度達20和50倍。此外,以多聚體材料包被近紅外熒光染料,形成納米微球,被證實可提高染料的生物相容性。如Kim等[17]通過將Cy5.5包裹于一種親水性多聚體中,從而有效改善染料與細胞的相容性,此新型NIFP可用于實時監控細胞凋亡早期細胞結構的影像學變化。
1.2 近紅外熒光量子點
量子點(quantum dots,QDs)又稱半導體納米微晶粒,作為一類新興的熒光探針,因其卓越的光學特性近年來在生物分析及醫療診斷等領域被廣泛應用[18]。該類探針隨粒徑大小和組成變化可調的熒光發射光譜,保障了其作為近紅外標記探針的可行性。相對于傳統有機熒光染料,QDs具有量子產率高、抗光漂白能力強、發射光譜集中且可調等無以比擬的優越性。上述優勢加上近紅外區熒光的低背景干擾、高穿透力等特性,使得近紅外熒光QDs(NIF-QDs)當前在分析領域,尤其是體內成像及診療應用方面大放異彩[19]。
然而,QDs對活體系統的潛在毒性嚴重限制了該類探針,尤其是主要用于體內生物影像分析的NIF-QDs的應用。研究表明,在QDs表面覆以一層具有良好生物相容性的外殼,可有效防止毒性金屬離子泄露,從而一定程度降低QDs的潛在毒性[20]。以無毒材料替代常規半導體元素,用于近紅外熒光量子點的制造,則為解決QDs的毒性問題提供了一套更徹底的方案。如Li等[21]即用CulnS2/ZnS核/殼結構合成了一種具有理想熒光強度、發射光譜在700~900 nm間、可調的無Cd型NIF-QDs,用于體內醫學造影。
1.3 近紅外熒光稀土配合物
發射光譜位于近紅外區的含Nd3+、Er3+、Yb3+及Tm3+等[22-25]稀土元素(鑭系元素)的配合物近年來被廣泛開發。相對于有機染料和半導體納米晶粒等NIFPs,近紅外熒光稀土配合物具有諸如斯托克位移大、熒光壽命長、不發生光漂白等獨特優勢[26]。
游離型鑭系元素的使用常受阻于因消光系數低而需要一個光子轉換器來處理-OH、-NH及-CH等引發的振動泛頻光譜[27]。為了攻克上述技術瓶頸,許多研究者致力于NIF鑭系元素的進一步優化。如Foucault-Collet等[28]開發了一種獨特的NIF稀土金屬-有機物框架結構 (metal-organic frameworks, MOFs),將大量的NIF發射型Yb3+離子與致敏劑phenylenevinylene dicarboxylate(PVDC)包裹于一個小體積內。該結構不僅為鑭系元素的敏化和保護提供了一條新途徑,同時也因其單位體積內攜帶探針數的增加而大大提高了檢測靈敏度。此外,將稀土元素摻入激光材料[29]或納米晶體[30]中亦被證實能有效改進其光學性能。
1.4 單壁碳納米管
作為一種新型碳材料,單壁碳納米管 (singlewalled carbon nanotubes,SWCNTs)因具有特殊的納米結構和優異的光學、力學、電學和磁學性能而在生物醫學領域顯示巨大的應用潛力,引起越來越多研究者的關注[31-32]。SWCNTs可光致發光,其發射光譜位于1 000 nm以外,是一種理想的近紅外熒光材料。其相對于其他探針分子具有如下優勢:首先,因SWCNTs在1 000~1 400 nm的近紅外區有強發射光且斯托克位移大,其相對于其他熒光探針受自發熒光的干擾顯著降低[33];其次,SWCNTs極短的熒光壽命(t<2 ns)可有效消除非輻射失活,從而使得該類熒光探針具有高熒光量子產率;此外,SWCNTs發射的熒光還對光漂白高度耐受,穩定性好[34]。
鑒于其量子產率高、背景干擾小、光穩定性好等特性,SWCNTs近年來作為理想的NIFPs已被廣泛用于體內[35]、體外[36]生物造影,及具重要診療意義標志分子的免疫檢測[37]。
低背景干擾、強穿透力等特性使NIFPs成為生物分析的理想示蹤材料,在諸多應用中基于NIFPs的近紅外熒光免疫測定 (near infrared fluorescence immunoassays,NIFIAs)日益受到關注。自Boyer等[38]1992年首次將NIFIAs用于人免疫球蛋白的定量分析以來,該技術目前在環境監測、醫療診斷等領域被廣泛用于多種靶標物的定性或定量免疫檢測。
2.1 環境污染物分析
有機溴除草劑除草啶和擬除蟲菊酯類殺蟲劑氰戊菊酯被廣泛用于害蟲及雜草防治,但其殘留時間長且遷移力強,嚴重污染土壤和地下水系統[39-40]。上述兩種農藥環境殘留的檢測多依賴儀器法,需要繁雜的提取程序、昂貴的儀器及專業分析人員,難以實現現場快捷檢測。為了克服上述缺陷,Wengatz等[41]開發了一種簡便的基于近紅外熒光菁染料標記的免疫測定法,用于其定量分析。該法的靈敏度與ELISA相當,為農藥殘留的環境監測提供了一個理想的分析工具。
2.2 醫療診斷標志分子檢測
與NIFIAs在環境污染物監測的少數報道相比,該法更多地被應用于診療學上重要標志分子的免疫檢測。到目前為止,NIFPs已被成功開發用于免疫微量滴定板[38]、光纖免疫傳感器[42]、毛細管印跡[43-44]、毛細管電泳免疫分析[45]及免疫層析試紙條[46]等多種不同免疫分析模式,以檢測醫療診斷關鍵蛋白質。
在20世紀90年代初期,NIFPs首次被應用于免疫檢測,在包被抗原的聚乙烯微孔滴定板中通過加入過量的經NIR染料標記的抗體及此后的熒光檢測,實現了人免疫球蛋白的定量測定[38]。而后Daneshvar等[47]設計并開發了一種熒光光纖免疫傳感器(fluorescent fiber-optic immunosenseor,FFOI),用于人源IgG的近紅外標記檢測。在此法中抗體被固定于FFOI的感應端,用于痕量特異性抗原的識別和捕獲,其免疫模式為三明治型,可在10~15 min內完成,檢測限達10 ng/mL。在后續研究中,以一種水溶性更好的NIR染料替代上述研究中所用的Dye1,FFOI體系被進一步證實可高效定量檢測人IgG并有效增敏1個數量級,同時FFOI亦可用于嗜肺軍團菌血清組1的檢測[42]。FFOI系統的檢測靈敏度可與ELISA技術相媲美,且具有操作時間短、檢測成本低及適用于現場檢測等ELISA無以比擬的優勢。此外,Silva等[48]開發了基于近紅外染料Cy5的光學免疫傳感器,用于綿羊Brucella sp.疾病感染的測定,該體系可實現患病綿羊血清中Brucella sp.抗體(0.005~0.11 mg/mL)的定量分析。根據抗原抗體復合物與游離的抗原、抗體在電泳行為上的差異,Cy5還被用于人唾液中分泌的IgA的毛細管電泳免疫檢測[45]。
1997年,Williams等[49]首次嘗試在硝酸纖維素膜上進行NIFIAs,開啟了NIFPs用于固相免疫測定的先河。此舉有效簡化了檢測程序,但其實際應用仍受阻于膜基質發射的散射光干擾大、膜致非特異性結合、難以與微量滴定板免疫測定法相契合等缺陷。在后續研究中,通過使用水溶性更好、因帶有負電荷磺酸鹽基團而有效減少同樣帶負電荷膜基質對染料-抗體復合物的非特異性結合的七甲川花菁染料NN382,上述困擾得到了有效解決,促進了固相NIFIAs的發展。此后,Zhao等[43]開發了一種稱為毛細管印跡的固相近紅外免疫熒光檢測技術,可用于復雜生物流體基質中多肽的免分離直接檢測。與商品化的雜交板相比,此法有效降低了印跡面積,提高靶標分析物強啡肽的檢測靈敏度達1 000倍。
近年來,有機熒光染料外的新型NIFPs亦被引入NIFIAs系統。如Deng等[50]通過將低廉的近紅外熒光染料亞甲藍包裹于疏水的硅膠外殼中,制備了一種新型核/殼結構NIF納米顆粒,經免疫凝集反應測定全血樣本中的甲胎蛋白質。該特殊結構較常規的覆染料硅納米粒子呈現更高的熒光強度及更好的穩定性,從而免受染料泄露及外源猝滅因子干擾。此外,基于雙重穩定劑修飾的CdTe[51]、CdTe/CdS核(薄)/殼(厚)[52]和以巰基丙酸為穩定劑的CdTe[53]及CdSeTe/CdS/ZnS[54]量子點的近紅外電致化學發光免疫傳感器也被開發,分別用于胎蛋白抗原、人IgG和癌胚抗原的檢測。上述體系利用近紅外熒光共振能量轉移系統,通過測定近紅外量子點標記蛋白質與另一探針(如金顆粒等)標記蛋白質間因免疫反應而產生的距離效應,根據引起的能量傳遞所致熒光強度變化,實現靶標分析物的高敏定量檢測。除NIR-QDs外,新興的NIR熒光材料SWCNTs也被Iizumi等[37]用于IgG的免疫測定。通過檢測結合IgG的SWCNTs與連接蛋白質G的免疫磁珠間的免疫共沉淀,該體系可測定濃度低至600 pmol/L的靶標分析物。
盡管高度靈敏,但NIFPs在上述免疫測定中的應用仍缺乏簡便性,因此其用戶友好性有待進一步改進。為了克服此缺陷,Swanson和D’Andrea[46]開發了一種基于近紅外熒光探針的定量免疫層析試紙條,用于白細胞介素-6和C-反應蛋白質的單重及多重同步檢測。NIFPs的高信噪比使得該試紙條的檢測限低至pg/mL級,與ELISA相當。綜上,近紅外標記免疫層析試紙條,為即時檢驗環境下生物標記蛋白質的評價提供了一個有力的工具。
鑒于背景干擾小、組織穿透力強等突出的優點,近年來NIFPs引起越來越多的關注。盡管當前體外及體內生物造影仍是NIFPs的主要應用領域[55-56],其在免疫分析中的應用自Boyer等[38]于1992年首開先河后多年來從未停止。隨著新型NIFPs的持續發掘及免疫分析技術的不斷發展,二者的結合應用在多個分析領域日益流行。免疫層析試紙條因操作簡單且可便攜而成為即時檢驗的最有力免疫分析工具,NIFPs在層析試紙條中的應用在不久的將來無疑能為現場、高敏型生物分析提供一個有價值的平臺。然而,據作者所知,當前僅有一個使用近紅外熒光染料800CW進行免疫層析試紙條標記的報道[46]。
食源性病原微生物是當前全世界范圍內食品中毒事件的最主要威脅因子之一。然而,傳統的基于微生物培養的檢測方法費時費力,無法提供及時的數據以有效降低食源性疾病的發生率。因此,當前無論是從食品企業控制產品質量,或是政府有效監管食品安全,從而保障公眾健康的角度,均亟需一種更快速、獨立的食源性致病微生物檢測方法。盡管當前基于膠體金的層析試紙仍是病原微生物現場快速檢測的金標準,但該標記技術仍受限于其較低的靈敏度及無法精確定量等缺陷。
綜合考慮上述因素,作者所在團隊正致力于靶向于沙門氏菌、副溶血性弧菌及單增李斯特菌等重要食源性致病菌檢測的近紅外熒光染料標記免疫層析試紙條的開發。高敏型近紅外標記探針與便攜、簡便的免疫層析試紙條的結合,將為食源性致病菌的靈敏、快速檢測提供一個全新的平臺。
[1]Pyo D J,Yoo J S.New trends in fluorescence immunochromatography[J].Journal of Immunoassay&Immunochemistry,2012,33(2):203-222.
[2]Heise H M.Application of near-infrared spectroscopy in medical sciences[M].Siesler H W,Ozaki Y,Kawata S,et al.Near-Infrared Spectroscopy:Principles,Instruments,Applications.Leipzig:WILEY-VCH Verlag GmbH,2002:289-333.
[3]Alander J T,Bochko V,Martinkauppi B,et al.A review of optical nondestructive visual and near-infrared methods for food quality and safety[J].International Journal of Spectroscopy,2013,20:1-36.
[4]Guo Z Q,Park S,Yoon J Y,et al.Recent progress in the development of near-infrared fluorescent probes for bioimaging applications[J].Chemical Society Reviews,2014,43(1):16-29.
[5]Amiot C L,Xu S P,Liang S,et al.Near-infrared fluorescent materials for sensing of biological targets[J].Sensors,2008,8(5):3082-3105.
[6]Stoyanov S.Probes:Dyes fluorescing in the NIR region[M].Raghavachari R.Near-Infrared Applications in Biotechnology.Boca Raton:CRC Press,2000:35-93.
[7]Zhao W L,Carreira E M.Conformationally restricted aza-BODIPY:Highly fluorescent,stable near-infrared absorbing dyes[J]. Chemistry-A European Journal,2006,12(27):7254-7263.
[8]Lee S C,Zhai D T,Mukherjee P,et al.The Development of novel near-infrared(NIR)tetraarylazadipyrromethene fluorescent dyes[J].Materials,2013,6(5):1779-1788.
[9]傅妮娜,王紅,張華山.近紅外熒光探針及其在生物分析中的應用進展[J].分析科學學報,2008,24(2):233-239.
FU Nina,WANG Hong,ZHANG Huashan.Progress in near-infrared fluorescent probe and its bioanalytical application[J]. Journal of Analytical Science,2008,24(2):233-239.(in Chinese)
[10]Gruber H J,Hahn C D,Kada G,et al.Anomalous fluorescence enhancement of Cy3 and Cy3.5 versus anomalous fluorescence loss of Cy5 and Cy7 upon covalent linking to proteins and noncovalent binding to avidin[J].Bioconjugate Chemistry,2000,11(5):696-704.
[11]Waggoner A S,Ernst L A,Mujumdar R B.Method for labeling and detecting materials employing arylsulfonate cyanate dyes:US Patent 5268486[P].1993-01-01.
[12]Cheng Z,Wu Z,Xiong Z,et al.Near-Infrared fluorescent RGD peptides for optical imaging of integrin avb3 expression in living mice[J].Bioconjugate Chemistry,2005,16(6):1433-1441.
[13]Chen J,Corbin I R,Li H,et al.Ligand conjugated low-density lipoprotein nanoparticles for enhanced optical cancer imaging in vivo[J].Journal of the American Chemical Society,2007,129(18):5798-5799.
[14]Christian N A,Milone M C,Ranka S S,et al.Tat-Functionalized Near-Infrared emissive polymersomes for dendritic cell labeling [J].Bioconjugate Chemistry,2007,18(1):31-40.
[15]Malicka J,Gryczynski I,Geddes C D,et al.Metal-enhanced emission from indocyanine green:a new approach to in vivo imaging [J].Journal of Biomedical Optics,2003,8(3):472-478.
[16]Tam F,Goodrich G P,Johnson B R,et al.Plasmonic enhancement of molecular fluorescence[J].Nano Letters,2007,7(2):496-501.
[17]Kim K,Lee M,Park H,et al.Cell-Permeable and biocompatible polymeric nanoparticles for apoptosis imaging[J].Journal of the American Chemical Society,2006,128(11):3490-3491.
[18]Kairdolf B A,Smith A M,Stokes T H,et al.Semiconductor quantum dots for bioimaging and biodiagnostic applications[J]. Annual Review of Analytical Chemistry,2013,6(1):143-162.
[19]van Veggel F C J M.Near-Infrared quantum dots and their delicate synthesis,challenging characterization,and exciting potential applications[J].Chemistry of Materials,2014,26(1):111-122.
[20]Ma Q,Su X G.Near-Infrared quantum dots:synthesis,functionalization and analytical applications[J].Analyst,2010,135(8):1867-1877.
[21]Li L,Daou J,Texier I,et al.Highly luminescent CulnS2/ZnS core/shell nanocrystals:Cadmium-Free quantum dots for in vivo imaging[J].Chemistry of Materials,2009,21(12):2422-2429.
[22]Aita K,Temma T,Shimizu Y,et al.Synthesis of a new NIR fluorescent Nd complex labeling agent[J].Journal of Fluorescence,2010,20(1):225-234.
[23]Yu C,Zhang J,Wen L,et al.New transparent Er3+-doped oxyfluoride tellurite glass ceramic with improved near infrared and upconversion fluorescence properties[J].Materials Letters,2007,61(17):3644-3646.
[24]Korovin Y V,Rusakova N V,Popkov Y A,et al.Luminescence of ytterbium and neodymium in complexes with bis-macrocyclic ligands[J].Journal of Applied Spectroscopy,2002,69(6):841-844.
[25]Zhang J,Petoud S.Azulene-Moiety-Based ligand for the efficient sensitization of four near-infrared luminescent lanthanide cations:Nd3+,Er3+,Tm3+,and Yb3+[J].Chemistry,2008,14(4):1264-1272.
[26]Comby S,Bünzli J-C G.Chapter 235 Lanthanide near-infrared luminescence in moleclular probes and devices[M].Gschneidner K A,Bünzli J-C G,Pecharsky V K.Handbook on the physics and chemistry of rare earths.North Holland:[s.n.],2007:217-470.
[27]Eliseeva S V,Bünzli J-C G.Lanthanide luminescence for functional materials and bio-sciences[J].Chemical Society Reviews,2010,39(1):189-227.
[28]Foucault-Collet A,Gogick K A,White K A,et al.Lanthanide near infrared imaging in living cells with Yb3+nano metal organic frameworks[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(43):17199-17204.
[29]Duan Z C,Zhang J J,He D B,et al.Effect of CdF2 addition on thermal stability and upconversion luminescence properties in Tm3+-Yb3+codoped oxyfluoride silicate glasses[J].Materials Chemistry&Physics,2006,100(2-3):400-403.
[30]Wei Y,Lu F Q,Zhang X R,et al.Synthesis and characterization of efficient near-infrared upconversion Yb and Tm codoped NaYF4 nanaocrystal reporter[J].Journal of Alloys&Compounds,2007,427:333-340.
[31]Ajayan P M,Zhou O Z.Application of carbon nanotubes[J].Topics in Applied Physics,2001,80:391-425.
[32]Endo M,Strano M S,Ajayan P M.Potential applications of carbon nanotubes[J].Topics in Applied Physics,2008,111:13-61.
[33]O’Connell M J,Bachilo S M,Huffman C B,et al.Band gap fluorescence from individual single-walled carbon nanotubes[J]. Science,2002,297(5581):593-596.
[34]Heller D A,Baik S,Eurell T E,et al.Single-walled carbon nanotube spectroscopy in live cells:towards long-term labels and optical sensors[J].Advanced Materials,2005,17(23):2793-2799.
[35]Tao H Q,Yang K,Ma Z,et al.In vivo NIR fluorescence imaging,biodistribution,and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite[J].Small,2012,8(2):281-290.
[36]Welsher K,Liu Z,Daranciang D,et al.Selective probing and imaging of cells with single walled carbon nanotubes as nearinfrared fluorescent molecules[J].Nano Letters,2008,8(2):586-590.
[37]Iizumi Y,Okazaki T,Ikehara Y,et al.Immunoassay with single-walled carbon nanotubes as near-infrared fluorescent labels[J]. Applied Material&Interfaces,2013,5(16):7665-7670.
[38]Boyer A E,Lipowska M,Zen J-M,et al.Evaluation of near infrared dyes as labels for immunoassays utilizing laser diodedetection:Development of near infrared dye immunoassay(NIRDIA)[J].Analytical Letters,1992,25(3):415-428.
[39]Zhu Y,Li Q X.Movement of bromacil and hexazinone in soils of Hawaiian pineapple fields[J].Chemosphere,2002,49(6):669-674.
[40]Liess M,Schulz R.Linking insecticide contamination and population response in an agricultural stream [J].Environmental Toxicology and Chemistry,1999,18(9):1948-1955.
[41]Wengatz I,Szurdoki F,Swamy A R,et al.Immunoassays for pesticide monitoring[M].Lakowicz J R.Advances in fluorescence sensing technology II.Bellingham:Proc SPIE,SIPE-the international society of optical engineering,1995:408-416.
[42]Daneshvar M I,Peralta J M,Casay G A,et al.Detection of biomolecules in the near-infrared spectral region via a fiber-optic immunosensor[J].Journal of Immunological Methods,1999,226(1-2):119-128.
[43]Zhao X Y,Kottegoda S,Shippy S A.Solid-phase immunoassay detection of peptides from complex matrices without a separation [J].Analyst,2003,128(4):357-362.
[44]Zhao X Y,Shippy S A.Competitive immunoassay for microliter protein samples with magnetic beads and near-infrared fluorescence detection[J].Analytical Chemistry,2004,76(7):1871-1876.
[45]Liu C M,Tung K H,Chang T H,et al.Analysis of secretory immunoglobulin A in human saliva by laser-induced fluorescence capillary electrophoresis[J].Journal of Chromatography B-Analytical Technologies in the Biomedical&Life Sciences,2003,791(1-2):315-321.
[46]Swanson C,D’Andrea A.Lateral flow assay with near-infrared dye for multiplex detection[J].Clinical Chemistry,2013,59(4):641-648.
[47]Daneshvar M I,Casay G A,Patonay G,et al.Design and development of a fiber-optic immunosensor utilizing near-infrared fluorophores[J].Journal of Fluorescence,1996,6(2):69-74.
[48]Silva M,Cruz H ,Rossetti O,et al.Development of an optical immunosensor based on the fluorescence of Cyanine-5 for veterinarian diagnostics[J].Biotechnology Letters,2004,26(12):993-997.
[49]Williams R J,Peralta J M,Tsang V C W,et al.Near-infrared heptamethine cyanine dyes:A new tracer for solid phase immunoassays[J].Applied Spectroscopy,1997,51(6):836-843.
[50]Deng T,Li J S,Jiang J H,et al.Preparation of near-IR fluorescent nanoparticles for fluorescence-anisotropy-based immunoagglutination assay in whole blood[J].Advanced Functional Materials,2006,16(16):2147-2155.
[51]Liang G D,Liu S F,Zou G Z,et al.Ultrasensitive immunoassay based on anodic near-infrared electrochemiluminescence from dual-stabilizer-capped CdTe nanocrystals[J].Analytical Chemistry,2012,84(24):10645-10649.
[52]Wang J,Han H,Jiang X,et al.Quantum dot-based near-infrared electrochemiluminescent immunosensor with gold nanoparticlegraphene nanosheet hybrids and silica nanospheres double-assisted signal amplification[J].Analytical Chemistry,2012,84(11):4893-4899.
[53]Liang G X,Pan H C,Li Y,et al.Near infrared sensing based on fluorescence resonance energy transfer between Mn:CdTe quantum dots and Au nanorods[J].Biosensors and Bioelectronics,2009,24(12):3693-3697.
[54]Li L L,Chen Y,Lu Q,et al.Electrochemiluminescence energy transfer-promoted ultrasensitive immunoassay using nearinfrared-emitting CdSeTe/CdS/ZnS quantum dots and gold nanorods[J].Scientific Reports,2013(3):15-29.
[55]Escobedo J O,Rusin O,Lim S,et al.NIR dyes for bioimaging applications[J].Current Opinion in Chemical Biology,2010,14(1):64.
[56]Li Y,Li Z,Wang X H,et al.In vivo cancer targeting and imaging-guided surgery with near infrared-emitting quantum dot bioconjugates[J].Theranostics,2012,2(8):769-776.
Near Infrared Fluorescent Probes and Their Applications in Immunoassay
XIE Xueqin1, YANG Xiangying2, GAO Jing1, LIANG Shuang3, KANG Xixi2,ZHANG Yan4, WANG Xiaojin5, XU Meiling6, WANG Jing7, ZHANG Jie*2
(1.Xiamen Products Quality Supervision&Inspection Institute,Xiamen 361004,China;2.Beijing Enter-Exit Inspection and Quarantine Bureau,Beijing 100026,China;3.School of Chemical and Engineering,Changchun University of Science and Technology,Changchun 1300123,China;4.Hebei Food Inspection and Research Institute,Shijiazhuang 050091,China;5.Huaian Enter-Exit Inspection and Quarantine Bureau,Huaian 223001,China;6.Linyi Enter-Exit Inspection and Quarantine Bureau,Linyi 276034,China;7.Weihai Enter-Exit Inspection and Quarantine Bureau,Weihai 264205,China)
Owing to the distinguished superiority of lower background noises,deeper penetrating capacity and less destructiveness to biomatrix over UV and visible fluorophores,near-infraredfluorescent probes(NIFPs)have gaining more and more attentions for analytical applications to date. With continuous research efforts in chemical synthesis and exploration of novel fluorescent materials,the number of NIFPs applicable for biological systems has grown substantially and widely applied in fields such as non-destructive detection,immunoassay and bioimaging in recent years.In this review,the properties,characterization and recent progresses in improvements of optical properties and signal intensity of 4 types of vital NIFPs(i.e.organic fluorophores,quantum dots,rare earth compounds and single-walled carbon nanotubes)were summarized.The applications of such important NIFPs in immunological analysis of environmental contaminants and clinically important biomarkers were also elaborated.Moreover,the potential of NIFPs-based immunochromatography technique adaptable for rapid detection of foodborne pathogens was also forecasted.
near infrared fluorescent probes,organic fluorophores,quantum dots,rare earth compounds,single-walled carbon nanotubes,environmental contaminants,clinically diagnostic biomarkers,immunoassay
R 122.12;X 502;TS 207.5
A
1673—1689(2015)03—0225—07
2014-09-10
國家質檢總局科技項目 (2013IK144);國家質檢總局公益性行業科研專項 (201410049);福建省自然科學基金項目(2014J01118)。
謝雪欽(1982—),女,福建莆田人,理學博士,工程師,主要從事食品微生物分子生物學及轉基因檢測研究。
E-mail:cherryxie36@163.com
*通信作者:張 捷(1965—),男,北京人,理學博士,高級工程師,主要從事食品檢測與食品安全評估研究。E-mail:zhangjie@bjciq.gov.cn