田 娟,郭 芳,趙越超
遼寧醫學院 組織學與胚胎學教研室,遼寧錦州 121001
膠質細胞源性神經營養因子及其受體在小鼠腎發育中的表達
田 娟,郭 芳,趙越超
遼寧醫學院 組織學與胚胎學教研室,遼寧錦州 121001
目的 探討膠質細胞源性神經營養因子(glial cell line-derived neurotrophic factor,GDNF)及其受體alpha 1(glial cell line-derived neurotrophic factor family receptor alpha 1,GFRα1)和受體酪氨酸激酶(receptor tyrosine kinase,RET)在小鼠腎發育過程中的表達和作用。方法 應用免疫組織化學和蛋白印跡技術對胚齡(embryonic days,E)12 d、14 d、16 d、18 d胎鼠和生后(neonatal days,N)1 d、7 d、14 d、21 d、40 d仔鼠腎組織中GDNF、GFRα1和RET的表達進行定位觀察和定量檢測。結果 免疫組化結果:在腎早期發生過程中,GDNF、GFRα1和RET均有表達。輸尿管芽可見GDNF、GFRα1和RET的微弱表達;生后腎組織可見GDNF和GFRα1的微弱表達。腎小體發育過程中,在小泡體、逗號小體和S小體階段可見GDNF和GFRα1的表達明顯增強;在毛細血管袢期腎小體和未成熟期腎小體可見GDNF和GFRα1的表達減弱;腎小體發育成熟后,可見GDNF和GFRα1的表達消失。腎泌尿小管發育過程中,在腎小管(近端小管和遠端小管)可見GDNF和GFRα1的表達;在集合管可見GDNF、GFRα1和RET的表達。在成熟腎中,GDNF和GFRα1定位表達于腎小管和集合管;RET定位表達于集合管。蛋白印跡結果:隨著腎逐漸發育成熟,GDNF、GFRα1和RET在腎中表達量先遞增,GDNF在E 18 d時表達量最高,GFRα1和RET在N 1 d時表達量最高;隨后,GDNF、GFRα1和RET在腎中表達量逐漸減少。結論 GDNF/GFRα1/RET信號通路對腎發育各階段及成熟腎功能的維持起重要作用。
膠質細胞源性神經營養因子;膠質細胞源性神經營養因子受體alpha 1;受體酪氨酸激酶;腎;發育;小鼠
膠質細胞源性神經營養因子(glial cell linederived neurotrophic factor,GDNF)是一種糖基化二硫鍵結合的同源二聚體蛋白質,屬于轉化生長因子β超家族成員,是目前發現的特異性最強的多巴胺能神經元營養因子[1-2]。GDNF受體由膠質細胞源性神經營養因子受體alpha1(glial cell line-derived neurotrophic factor family receptor alpha 1,GFRα1)和受體酪氨酸激酶(receptor tyrosine kinase,RET)組成。GFRα1為糖基化磷脂酞肌醇錨定受體,缺乏跨膜區和膜內區[3-4];RET則具有膜外、跨膜和膜內成分,起信號傳導作用[5-6]。GDNF/GFRα1/ RET信號通路調控體內多個器官系統的發育過程,并維持其正常的生理功能[7-9]。國外文獻報道,GDNF/GFRα1/RET信號通路參與腎輸尿管芽發生及形態學分支[10-13],推測該信號傳導通路在腎的發生、發育過程中發揮重要的作用。另有研究表明,某些腎發育畸變疾病如腎母細胞瘤與GDNF/ GFRα1/RET信號通路的異常調控有關[14]。在前期研究的基礎上,我們系統檢測了GDNF/GFRα1/ RET信號通路在小鼠腎發生、發育過程中的表達,以便進一步探討GDNF/GFRα1/RET信號通路參與腎分化、發育的具體調控機制。
1實驗動物 昆明系小鼠由中國醫科大學實驗動物中心(生產許可證SCXK(遼)2008-0005)提供。取成年雌性、雄性小鼠按1∶1合籠,培育孕鼠,通過檢查陰道栓精確記錄孕鼠的受孕時間。陰道栓脫落的最早時間為胚齡[15](embryonic days,E) 0 d。仔鼠出生的最早時間計為生后(neonatal days,N) 0 d。分組原則:分別取E 12 d、E 14 d、E 16 d、E 18 d胎鼠和N 1 d、N 7 d、N 14 d、N 21 d、N 40 d仔鼠,每組8只,共72只[1]。
2實驗試劑 GDNF兔多克隆抗體(sc-328)、GFRα1兔多克隆抗體(sc-10716)、RET兔多克隆抗體(sc-167)購自Santa公司。免疫組化試劑盒、DAB顯色試劑盒購自北京中杉金橋生物工程有限公司。3-磷酸甘油醛脫氫酶(glyceraldehyde-3-phosphate Dehydrogease,GAPDH)鼠單克隆抗體購自康成生物公司。
3標本制備 胎鼠腎:孕鼠乙醚麻醉,剖腹取出胎鼠,E 14 d、E 16 d、E 18 d胎鼠分別取左、右腎,E 12 d由于未形成腎完整外形,故取全胚。仔鼠腎:各日齡仔鼠經斷頭法處死,分別取左、右腎。4%多聚甲醛固定3 h,其中E 12 d需全胚固定,E 14 d、E 16 d、E 18 d左全腎固定,生后各日齡左腎橫向截切成薄片狀固定,然后用流水沖洗0.5 h。將標本浸入70%、80%、90%、95%、100%乙醇逐級脫水,浸入二甲苯直至標本透明。標本放入液體石蠟中浸蠟3 h后,用石蠟定向包埋。E 12 d全胚尾側向下縱向包埋,E 14 d、E 16 d、E 18 d全腎縱向包埋,生后各組織塊定向包埋。各組織塊行連續切片,厚度5μm。
4免疫組織化學染色 石蠟切片浸入二甲苯脫蠟,隨后經100%、90%、80%、70%乙醇水化,去離子水漂洗。切片放置切片架上,浸入枸櫞酸鈉修復液中,高壓修復抗原2 min,冷卻至室溫。依次滴加3% H2O2室溫孵育10 min,5%正常山羊血清封閉液室溫封閉1 h,一抗4℃孵育過夜,聚合物輔助劑37℃孵育30 min,辣根酶標記抗兔IgG聚合物37℃孵育30 min(工作液濃度分別為GDNF 1∶100,GFRα1 1∶150,RET 1∶150)。DAB顯色5 ~ 10 min;蘇木素復染,常規乙醇脫水、透明、中性樹脂封片。光學顯微鏡觀察、采集圖像。以磷酸緩沖液(phosphate buffer solution,PBS)代替一抗作陰性對照。上述各步驟均用0.01 mol/L PBS沖洗[1]。
5蛋白印跡法 取右腎稱重,加入適量蛋白裂解液,置于4℃冰箱搖床上,裂解過夜。次日,將組織裂解液混合物置于低溫離心機,12 000 g 4℃離心30 min,提取上清液,進行蛋白定量,每管50 μg蛋白分裝。將樣品蛋白和Marker放入100℃水浴煮沸使蛋白發生變性。蛋白樣品經電泳、轉膜后,將膜依次置于封閉液室溫封閉1 h,一抗工作液中4℃孵育過夜,辣根過氧化物酶(horseradish peroxidase,HRP)標記的二抗工作液中室溫孵育2 h (工作液濃度分別為GDNF 1∶500,GFRα1 1∶700,RET 1∶700,二抗1∶5 000)。將膜置于保鮮膜上,A、B發光液按1∶1比例混合,滴加膜上,用BIO-RAD圖像分析系統采集圖像并分析。
6統計學分析 應用SPSS16.0軟件對實驗數據進行分析,實驗數據以-x±s表示,P<0.05為差異有統計學意義。
1免疫組織化學染色結果 在腎早期發生過程中,GDNF、GFRα1和RET均有表達。其中,輸尿管芽可見GDNF、GFRα1和RET的微弱表達;生后腎組織可見GDNF和GFRα1的微弱表達。在腎小體發育過程中,GDNF、GFRα1和RET均有不同程度的表達。其中,在小泡體、逗號小體和S小體階段可見GDNF和GFRα1的表達明顯增強;在毛細血管袢期腎小體和未成熟期腎小體可見GDNF和GFRα1的表達減弱;腎小體發育成熟后,可見GDNF和GFRα1的表達消失。在腎泌尿小管(腎小管和集合管)發育過程中,GDNF、GFRα1和RET均有不同程度的表達。其中,在腎小管(近端小管和遠端小管)發育各階段可見GDNF和GFRα1的表達;在集合管發育各階段可見GDNF、GFRα1和RET的表達。在成熟腎中,GDNF和GFRα1定位表達于腎小管和集合管;RET定位表達于集合管。見圖1、圖2、圖3。
2 蛋白印跡法檢測結果 GDNF在腎發生、發育中的表達變化規律:E 14 d ~ E 18 d,表達量逐漸增加,E 16 d ~ E 18 d表達量明顯增加;E 18 d達峰值;E 18 d ~ N 40 d,表達量逐漸減少,N 7 d表達量明顯減少。GFRα1和RET在腎發生、發育中的表達變化規律:E 14 d ~ N 1 d,表達量逐漸增加,GFRα1在E 16 d表達量明顯增加,RET在E 18 d表達量明顯增加;N 1 d達峰值;N 1 d ~ N 40 d,表達量逐漸減少,GFRα1在N 21 d表達量明顯減少,RET在N 7 d、N 21 d表達量明顯減少。見圖4。
哺乳動物的腎來源于胚胎發育中的后腎。中腎管末端向背外側發出一盲管,即輸尿管芽。輸尿管芽向頭背方向生長,并伸入中腎嵴尾端,經

圖 1 GDNF在小鼠腎發育過程中的表達 (免疫組化染色, A:×200; B ~ J:×400)A: N 1 d時,GDNF在小鼠腎中表達;B:輸尿管芽和生后腎組織;C:小泡體;D:逗號小體;E:S小體;F:毛細血管袢期腎小體;G:未成熟期腎小體;H:近端小管;I:遠端小管;J:集合管Fig. 1 Expression of GDNF in development of mice kidney (immunohistochemistry; A:×200; B-J:×400)A: N 1 d, the expression of GDNF in mice kidney; B: ureteric bud and metanephrogenic tissue; C: vesicle body; D: comma-shaped body; E: S-shaped body; F: capillary loop stage; G: immature renal corpuscles; H: proximal tubule; I: distal tubule; J: collecting duct

圖 2 GFRα1在小鼠腎發育過程中的表達(免疫組化染色, A:×200; B ~ J: ×400)A:N 1 d時,GFRα1在小鼠腎中表達;B:輸尿管芽和生后腎組織;C:小泡體;D:逗號小體;E:S小體;F:毛細血管袢期腎小體;G:未成熟期腎小體;H:近端小管;I:遠端小管;J:集合管Fig. 2 Expression of GFRα1 in development of mice kidney (immunohistochemistry, A:×200; B-J:×400)A: N 1 d, the expression of GFRα1 in mice kidney; B: ureteric bud and metanephrogenic tissue; C: vesicle body; D: comma-shaped body; E: S-shaped body; F: capillary loop stage; G: immature renal corpuscles; H: proximal tubule; I: distal tubule; J: collecting duct

圖 3 RET在小鼠腎發育過程中的表達 (免疫組化染色, A:×200 B、C:×400)A:E 16 d時,RET在小鼠腎表達;B:輸尿管芽;C:集合管Fig. 3 Expression of RET in development of mice kidney (immunohistochemistry,A:×200; B, C:×400)A:E 16 d,the expression of RET in mice kidney;B:ureteric bud;C:collecting duct


圖 4 GDNF、GFRα1和RET在小鼠腎發育各階段表達量的變化(n=8) A:電泳條帶;B:光密度值;aP<0.05, vs GDNF;bP<0.05, vs GFRα1;cP<0.05, vs RET
Fig. 4 Expression of GDNF, GFRα1 and RET in different development stages of mice kidney (n=8) A:electrophoresis strip;B:optical density value;aP<0.05, vs GDNF;bP<0.05, vs GFRα1;cP<0.05, vs RET不斷增殖、分化,最終形成集合管。生后腎組織內的間充質細胞呈帽狀聚集在輸尿管芽末端周圍,并不斷增殖、上皮化,依次經歷小泡體、逗號小體、S小體、毛細血管袢期腎小體、未成熟的腎小體等階段,最終形成成熟腎小體[15-16]。近年來,有研究表明GDNF及其受體參與并調控腎輸尿管芽的生長與分支過程[10-13]。而GDNF或其受體突變常導致腎發育不良或畸形[17-18]。另有研究顯示,在某些病理情況下如腎母細胞瘤病人腫瘤組織內或慢性腎衰病人血漿中,均出現GDNF及其受體表達增強或含量增加[14,19]。這些研究提示GDNF/ GFRα1/RET信號通路不僅能夠參與正常腎的發生、發育過程;而且與某些腎發育不良、腎腫瘤或慢性腎衰竭的發病機制或病理過程有關。
本研究顯示,小鼠腎GDNF、GFRα1和RET在E 12 d時開始表達,表明GDNF信號通路在小鼠腎發育早期就開始發揮作用。隨著腎的發育,GDNF和GFRα1在腎小體發育的各個階段均有表達,說明GDNF/GFRα1與腎小體的發生、增殖和分化密切相關。腎小體發育成熟后,GDNF、GFRα1和RET的表達消失,推測GDNF/GFRα1/ RET信號通路與腎小體的功能無關。有趣的是,作為GDNF的受體之一,RET在各期腎小體均未見表達,這表明在腎發育過程中還可能存在其他能夠與GDNF結合的受體。腎泌尿小管(包括近端小管、遠端小管和集合管)對腎小體形成的原尿具有濃縮、重吸收和分泌的功能,進而調節機體的水、電解質、酸堿平衡。本研究發現,GDNF、GFRα1和RET在腎泌尿小管的發育和成熟階段亦有表達,這一結果與前人的研究結果相似[10-13],表明GDNF信號通路在維持腎正常的生理功能方面同樣發揮重要作用。隨著腎不斷發育成熟,GDNF、GFRα1和RET的表達量不斷遞增,達到峰值之后逐漸遞減,其表達峰值出現于E 18 d或N 1 d,即圍生期。這也是本研究首次發現的GDNF信號通路在腎發育過程中的表達變化特點,這一特點的意義還有待于進一步研究。
由此可見,GDNF/GFRα1/RET信號通路對腎發育各階段及成熟腎功能的維持起重要作用。本研究全面、系統地觀察了GDNF/GFRα1/RET信號通路在腎發生、發育過程中的表達,這將有助于進一步探討GDNF/GFRα1/RET信號通路在腎發生、發育中的具體調控機制,為腎畸變等疾病的病因、預防和治療提供理論基礎。
1 趙越超,田娟,郭芳,張雪. 膠質細胞源性神經營養因子在小鼠腎臟發育過程中的表達[J].中國現代醫學雜志,2014,24(34):6-10.
2 燕洪濤,柳林.轉化生長因子-β超家族受體的研究進展[J].軍醫進修學院學報,2005,26(6):487-490.
3 Shimoda T, Yaginuma H, Sato N, et al. Neurogenin2 expression together with NeuroM regulates GDNF family neurotrophic factor receptor alpha 1 (GFR alpha 1) expression in the embryonic spinal cord[J]. Dev Biol, 2012, 370(2): 250-263.
4 Guo GF, Singh V, Zochodne DW. Growth and turning properties of adult glial Cell-Derived neurotrophic factor coreceptor alpha 1 nonpeptidergic sensory neurons[J]. J Neuropathol Exp Neurol,2014, 73(9): 820-836.
5 Goodman KM, Kjaer S, Beuron F, et al. RET recognition of GDNFGFRa alpha 1 ligand by a composite binding site promotes Membrane-Proximal Self-Association[J]. Cell Rep, 2014, 8(6): 1894-1904.
6 Patel A, Harker N, Moreira-Santos L, et al. Differential RET signaling pathways drive development of the enteric lymphoid and nervous systems[J]. Sci Signal, 2012, 5(235): ra55.
7 Rodrigues DM, Li AY, Nair DG, et al. Glial cell line-derived neurotrophic factor is a key neurotrophin in the postnatal enteric nervous system[J]. Neurogastroenterol Motil, 2011, 23(2):e44-e56.
8 Almeida AR, Arroz-Madeira S, Fonseca-Pereira D, et al. RET/ GFRα signals are dispensable for thymic T cell development in vivo[J]. PLoS One, 2012, 7(12):e52949.
9 Uesaka T, Nagashimada M, Enomoto H. GDNF signaling levels control migration and neuronal differentiation of enteric ganglion precursors[J]. J Neurosci, 2013, 33(41): 16372-16382.
10 Costantini F. GDNF/Ret signaling and renal branching morphogenesis From mesenchymal signals to epithelial cell behaviors[J]. Organogenesis, 2010, 6(4): 252-262.
11 Willecke R, Heuberger J, Grossmann K, et al. The tyrosine phosphatase Shp2 acts downstream of GDNF/Ret in branching morphogenesis of the developing mouse kidney[J]. Dev Biol,2011, 360(2): 310-317.
12 Keefe Davis T, Hoshi M, Jain S. Stage specific requirement of Gfrα1 in the ureteric epithelium during kidney development[J]. Mech Dev, 2013, 130(9-10):506-518.
13 Park HJ, Bolton EC. Glial cell line-derived neurotrophic factor induces cell proliferation in the mouse urogenital sinus[J]. Mol Endocrinol, 2015, 29(2):289-306.
14 Hou XM, Chen X, Wang YL. The role of Pax2 in regulation of kidney development and kidney disease[J]. Yi Chuan, 2011, 33(9):931-938.
15 Khairallah H, El Andalousi J, Simard A, et al. Claudin-7, -16, and -19 during mouse kidney development[J]. Tissue Barriers, 2014,2(4):e964547.
16 Upadhyay KK, Silverstein DM. Renal development: a complex process dependent on inductive interaction[J]. Curr Pediatr Rev,2014, 10(2):107-114.
17 Jeanpierre C, Macé G, Parisot M, et al. RET and GDNF mutations are rare in fetuses with renal agenesis or other severe kidney development defects[J]. J Med Genet, 2011, 48(7):497-504.
18 Sarin S, Boivin F, Li AH, et al. beta-Catenin overexpression in the metanephric mesenchyme leads to renal dysplasia Genesis via Cell-Autonomous and Non-Cell-Autonomous mechanisms[J]. Am J Pathol, 2014, 184(5): 1395-1410.
19 Orth SR, Ritz E, Suter-Crazzolara C. Glial cell line-derived neurotrophic factor (GDNF) is expressed in the human kidney and is a growth factor for human mesangial cells[J]. Nephrol Dial Transplant, 2000, 15(5): 589-595.
Expression of GDNF and its receptors in development of kidney of mice
TIAN Juan, GUO Fang, ZHAO Yuechao
Department of Histology and Embryology, Liaoning Medical University, Jinzhou 121001, Liaoning Province, China
Objective To investigate expressions and role of glial cell line-derived neurotrophic factor (GDNF),GDNF family receptor alpha l (GFRα1) and RET in the development of mice kidney. Methods Immunohistochemistry and Western blot were used to detect the expressions of GDNF, GFRα1 and RET in E 12 d, E 14 d, E 16 d, E 18 d, N 1 d, N 7 d, N 14 d, N 21 d and N 40 d mice kidneys. Results The results showed that GDNF, GFRα1and RET were expressed in the early stage of renal development. The weak expressions of GDNF, GFRα1and RET were detected in the ureter bud, and the weak expressions of GDNF and GFRα1 were detected in metanephrogenic tissue. During the development process of renal corpuscles, GDNF and GFRα1 were expressed obviously in vesicle bodies, comma-shaped bodies and S-shaped bodies, while they were expressed weakly in capillary loop stage and immature renal corpuscles. With the mature of renal corpuscles, expressions of GDNF and GFRα1 disappeared. During the development process of uriniferous tubule, GDNF and GFRα1 were expressed in renal tubules (proximal tubule and distal tubule); GDNF, GFRα1 and RET were expressed in collecting ducts. In mature kidney, GDNF and GFRα1 were expressed in renal tubules and collecting ducts, RET was expressed in collecting ducts. Western blot results showed that, with the development of kidney, the expressions of GDNF, GFRα1 and RET increased at frst, and reached to the peak at E 18 d (GDNF) and N 1 d (GFRα1 and RET). Then, expressions of GDNF, GFRα1 and RET in kidney decreased along with neonatal age. Conclusion GDNF/GFRα1/RET signaling pathway plays an important role in different development stages of kidney and in maintaining the function of mature kidney.
glial cell line-derived neurotrophic factor; glial cell line-derived neurotrophic factor family receptor alpha l; receptor tyrosine kinase; kidney; development; mice
R 329.4
A
2095-5227(2015)09-0935-05
10.3969/j.issn.2095-5227.2015.09.021
時間:2015-05-04 10:25
http://www.cnki.net/kcms/detail/11.3275.R.20150504.1025.002.html
2015-01-22
遼寧省教育廳科學技術研究項目(L2012307);遼寧省科學技術計劃項目(2013022067);遼寧省大學生創新創業訓練計劃項目(201410160037);國家大學生創新創業訓練計劃項目(201410160037)
Supported by Scientific Technology Research of Fund Liaoning Provincial Education Department(L2012307); Scientific Technology Program Fund of Liaoning Province(2013022067); College Students' Innovative Entrepreneurial Training Projects of Liaoning Province(201410160037); College Students' Innovative Entrepreneurial Training Projects of China(201410160037)
田娟,女,博士,副主任醫師,副教授。研究方向:腎發育的分子調控機制。Email: tian555juan555@sina.com
The frst author: TIAN Juan. Email: tian555juan555@sina.com