楊文超,高鐵嬰,胡 婕,李瑞生,宋 青解放軍總醫(yī)院 重癥醫(yī)學(xué)科,北京 00853;解放軍第30醫(yī)院 動(dòng)物實(shí)驗(yàn)中心,北京 00039
基礎(chǔ)研究論著
水浴降溫與室溫降溫對(duì)熱打擊大鼠肺組織損傷及預(yù)后影響比較
楊文超1,高鐵嬰1,胡 婕1,李瑞生2,宋 青1
1解放軍總醫(yī)院 重癥醫(yī)學(xué)科,北京 100853;2解放軍第302醫(yī)院 動(dòng)物實(shí)驗(yàn)中心,北京 100039
目的研究冰水浴、常溫水浴、室溫降溫對(duì)熱打擊(heat stress,HS)大鼠死亡構(gòu)成比、肺組織病理及相關(guān)細(xì)胞因子水平的影響。方法115只雄性SD大鼠隨機(jī)分為肺損傷觀察組(n=70)和死亡率分析組(n=45)。肺損傷觀察組隨機(jī)分為空白對(duì)照(normothermic contral,NC)組(n=10)和熱打擊(room temperature,RT)組(n=60),NC組始終置于室溫環(huán)境,HS組大鼠麻醉后置于高溫高濕模擬環(huán)境,核心體溫達(dá)42℃后,隨機(jī)分為室溫降溫組(n=20),常溫水浴降溫(temperate-water immersion,TWI)組(n=20),冰水浴降溫(ice water immersion,IWI)組(n=20),分別給予相應(yīng)降溫方法降溫。同時(shí),將3組大鼠分別隨機(jī)分為熱打擊后15 min處死組(n=10)和3 h處死組(n=10)。各組大鼠在相應(yīng)時(shí)間點(diǎn)處死,HE染色觀察肺組織病理改變,Elisa檢測(cè)肺組織勻漿相關(guān)細(xì)胞因子水平。死亡率分析組隨機(jī)分為HS + RT組、HS + TWI組、HS + IWI組,統(tǒng)計(jì)熱打擊后3 h死亡構(gòu)成比。結(jié)果與HS + RT組相比,HS + TWI組和HS + IWI組大鼠死亡構(gòu)成比顯著降低(χ2=10.601,P=0.001)。HS + IWI 3 h組肺組織出現(xiàn)間質(zhì)水腫、出血,肺泡萎縮塌陷、腔內(nèi)出血,促炎因子TNF-α水平高于NC組(P<0.05)及對(duì)應(yīng)TWI組、RT組(P<0.05)。結(jié)論TWI、IWI較RT顯著改善熱打擊大鼠預(yù)后,但I(xiàn)WI誘發(fā)更為嚴(yán)重的肺組織損傷,提示目前的水浴溫度、水浴時(shí)長等可能不是最優(yōu)的。
熱打擊;冰水浴降溫;肺;炎癥;大鼠
熱射病是機(jī)體暴露在高溫、高濕環(huán)境中,核心體溫(core temperature,Tc)迅速升高(通常>40℃)伴中樞神經(jīng)系統(tǒng)癥狀為主要特征的致命性急癥,發(fā)病后迅速出現(xiàn)全身炎性反應(yīng)及多器官功能障礙[1-3],病死率可達(dá)40%[4]。75%熱射病患者合并多器官功能障礙,其中87.5%出現(xiàn)呼吸衰竭,主要表現(xiàn)為急性呼吸窘迫綜合征[3,5]。動(dòng)物實(shí)驗(yàn)證明,熱打擊(heat stress,HS)后大鼠肺組織出現(xiàn)急性炎癥反應(yīng)[3,6-7]。迅速降溫和器官功能支持是熱射病的兩個(gè)主要治療原則[1]。將體溫在30 min內(nèi)降至40℃以下至關(guān)重要,為熱射病治療的“黃金半小時(shí)”。快速降溫的金標(biāo)準(zhǔn)為冷水浴降溫(cold water immersion,CWI)(1.7~14.0℃),其中4℃以下水浴降溫又稱冰水浴降溫(ice water immersion,IWI)。臨床上也有使用常溫水浴降溫(temperate-water immersion,TWI)(20~26℃)的報(bào)道[8]。但水浴降溫對(duì)熱打擊后肺組織損傷的影響國內(nèi)外尚無詳盡報(bào)道。本實(shí)驗(yàn)通過比較冰水浴、常溫水浴、室溫降溫對(duì)熱打擊大鼠死亡構(gòu)成比、肺組織病理及相關(guān)細(xì)胞因子水平的影響,探討水浴降溫對(duì)熱打擊致急性肺損傷的作用效果。
1 實(shí)驗(yàn)動(dòng)物 健康雄性Sprague-Dwley大鼠115只,12~14周齡,體質(zhì)量(210±20) g,SPF級(jí),由解放軍第302醫(yī)院提供。分籠適應(yīng)性飼養(yǎng)3 d(動(dòng)物合格證書編號(hào):軍動(dòng)管字第2014022191號(hào)),溫度(23±1)℃,濕度40%±5%,燈光照明,12 h晝夜節(jié)律變化。遵守實(shí)驗(yàn)動(dòng)物倫理原則,關(guān)注動(dòng)物福利,盡可能減少對(duì)動(dòng)物的損害。
2 主要儀器和試劑 自制熱環(huán)境仿真模擬艙,動(dòng)物肛溫表,定時(shí)秒表,控溫毯,離心機(jī),電動(dòng)勻漿器,生物組織包埋機(jī),組織切片機(jī),EP管。4%多聚甲醛,二甲苯,無水乙醇,95%、85%、75%及60%乙醇,蒸餾水,蘇木精染液,伊紅染液,PBS液,苯甲基磺酰氟,BCA蛋白定量試劑盒(Beyotime),ELISA檢測(cè)試劑盒(NeoBioscience):轉(zhuǎn)化生長因子β(transforming growth factor-beta,TGF-β)(ERC107b.96),白細(xì)胞介素10(interleukin-10,IL-10)(ERC004.96),腫瘤壞死因子α(tumor necrosis factor-alpha,TNF-α)(ERC102a.96),IL-6 (ERC003.96)。
3 實(shí)驗(yàn)分組與熱打擊模型制備 實(shí)驗(yàn)前12 h禁食不禁水,實(shí)驗(yàn)動(dòng)物按隨機(jī)數(shù)字表法隨機(jī)分為肺損傷觀察組(n=70)和死亡率分析組(n=45)。肺損傷觀察組再隨機(jī)分為空白對(duì)照(normothermic control,NC)組(n=10)和HS組(n=60),NC組始終置于室溫環(huán)境[溫度(23±1)℃,濕度40%±5%]。HS組大鼠10%水合氯醛2 ml/kg腹腔麻醉后,俯臥置于溫度(37.5±0.5)℃、濕度65%±5%的模擬環(huán)境[9-10],核心體溫達(dá)到42℃建立熱打擊模型后[11],從模擬環(huán)境中取出并隨機(jī)分為3組,立即使用相應(yīng)降溫方法進(jìn)行降溫:室溫降溫(room temperature,RT)組(n=20)置于室溫降溫,TWI組(n=20)置于(21±1)℃水浴降溫,IWI(n=20)置于(3±1)℃水浴降溫,降至熱打擊前核心體溫后使用控溫毯維持體溫。同時(shí),將3組大鼠分別隨機(jī)分為熱打擊后15 min處死組和3 h處死組兩個(gè)亞組,記為HS + RT 15 min組(n=10),HS + RT 3 h組(n=10),HS + TWI 15 min組(n=10),HS + TWI 3 h組(n=10),HS + IWI 15 min組(n=10),HS + IWI 3 h組(n=10)。死亡率分析組隨機(jī)分為HS + RT組(n=15)、HS + TWI組(n=15)、HS + IWI組(n=15),造模及降溫方法同上,觀察熱打擊后3 h大鼠存活情況并統(tǒng)計(jì)死亡構(gòu)成比。
4 核心體溫監(jiān)測(cè) 使用動(dòng)物肛溫表測(cè)量肛溫作為核心體溫(℃),Tc<41℃時(shí),每15 min測(cè)量1次;Tc>41℃時(shí),每5 min測(cè)量1次,直至造模成功,記錄造模時(shí)間(min)。計(jì)算各降溫方法降溫速率(υ,℃/min),IWI及TWI公式:

5 HE染色 各組大鼠均在10%水合氯醛麻醉下頸動(dòng)脈取血處死,取左肺于4%多聚甲醛灌注固定。切取3 mm×3 mm×2 mm組織塊,60%乙醇過夜、75%乙醇50 min、85%乙醇50 min、95%乙醇50 min、無水乙醇50 min (2次)脫水。二甲苯30 min (2次)透明,65℃恒溫下浸蠟20 min (2次)。包埋后行5μm切片,而后行蘇木精-伊紅染色,光學(xué)顯微鏡下觀察并照相。
6 肺組織TNF-α、IL-6、IL-10、TGF-β檢測(cè)剪取適量右肺下葉同一區(qū)域組織至2 ml EP管,加入500μl遇冷PBS,加至終濃度為1 mmol/L的苯甲基磺酰氟,電動(dòng)勻漿器勻漿10 s×3次,冰上放置20 min,4℃、15 000 r/min離心20 min。離心后,收集上清液,BCA蛋白定量測(cè)定各樣本蛋白濃度,用PBS將各樣本蛋白調(diào)整為蛋白濃度一致(5 mg/ ml),Elisa檢測(cè)TNF-α、IL-6、IL-10、TGF-β濃度。
1 熱打擊模型大鼠一般情況 各組大鼠體質(zhì)量、造模前Tc、造模成功Tc、造模時(shí)間差異均無統(tǒng)計(jì)學(xué)意義。HS + TWI 15 min組、HS + IWI 15 min組均在熱打擊后15 min內(nèi)降至熱打擊前Tc(υTWI=0.34± 0.04,υIWI=0.55±0.06),而HS + RT 15 min組在處死時(shí)未能降至熱打擊前Tc(υRT=0.14±0.05)。IWI降溫速率大于TWI(P<0.05),TWI降溫速率大于RT(P<0.05)。見表1。
2 肺組織病理 HS + RT 15 min組、HS + RT 3 h組、HS + TWI 15 min組、HS + TWI 3 h組、HS + IWI 15 min組出現(xiàn)肺間質(zhì)毛細(xì)血管擴(kuò)張、間質(zhì)增寬;HS + IWI 3 h組可見肺間質(zhì)增寬、水腫、出血,肺泡萎縮塌陷、腔內(nèi)出血。各組均未見明顯的中性粒細(xì)胞浸潤。見圖1。
3 肺組織TGF-β、IL-10變化 HS + RT 15 min組、HS + TWI 15 min組、HS + IWI 15 min組TGF-β、IL-10水平高于NC組(P<0.05);HS + TWI 15 min組、HS + IWI 15 min組TGF-β、IL-10水平低于HS + RT 15 min組(P<0.05);HS + IWI 15 min組TGF-β、IL-10水平高于HS + TWI 15 min組(P<0.05)。HS + RT 3 h組、HS + TWI 3 h組、HS + IWI 3 h組TGF-β、IL-10水平低于NC組(P<0.05)及其對(duì)應(yīng)15 min組(P<0.05);HS + TWI 3 h組、HS + IWI 3 h組TGF-β、IL-10水平高于HS + RT 3 h組(P<0.05);HS + IWI 3 h組TGF-β水平高于HS + TWI 3 h組(P<0.05);HS + IWI 3 h組IL-10水平低于HS + TWI 3 h組(P<0.05)。見圖2。4 肺組織TNF-α、IL-6水平變化 HS + TWI 15 min組、HS + IWI 15 min組TNF-α水平高于NC組和HS + RT 15 min組(P<0.05);HS + IWI 15 min組高于HS + TWI 15 min組(P<0.05);HS + RT 15 min組與NC組TNF-α水平差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。HS + RT 3 h組、HS + TWI 3 h組、HS + IWI 3 h組TNF-α水平高于NC組(P<0.05)及相應(yīng)15 min組(P<0.05);HS + TWI 3 h組、HS + IWI 3 h組高于HS + RT 3 h組(P<0.05);HS + IWI 3 h組高于HS + TWI 3 h組(P<0.05)。各組IL-6水平差異均無統(tǒng)計(jì)學(xué)意義(P>0.05)。見圖2。

圖 1 各組大鼠肺組織病理改變 (HE×800)Fig. 1 Histological examination of lung tissues of rats in each group (HE×800)
表1 各組大鼠體質(zhì)量、核心體溫、造模時(shí)間、降溫速率比較Tab. 1 Comparison of weight, Tc, time of HS, cooling rate of rats in each group (±s)

表1 各組大鼠體質(zhì)量、核心體溫、造模時(shí)間、降溫速率比較Tab. 1 Comparison of weight, Tc, time of HS, cooling rate of rats in each group (±s)
Tc: core temperature; υ: cooling rate; NC: normothermic control; HS: heat stress; RT: room temperature; TWI: temperate-water immersion; IWI: ice water immersion; 15 min: 15 minutes after heat stress; 3 h: 3 hours after heat stress.aP<0.05, vs HS + RT;bP<0.05, vs HS + TWI

圖 2 水浴降溫對(duì)大鼠肺組織TGF-β、 IL-10、 TNF-α、 IL-6的影響Fig. 2 Effects of water immersion on TGF-β, IL-10, TNF-α, IL-6 levels in lung homogenate HS: heat stress; RT: Room temperature; TWI: Temperate-water immersion; IWI: Ice-water immersion; NC: normothermic control; 15 min: 15 minutes after heat stress; 3 h: 3 hours after heat stress.aP<0.05, vs NC;bP<0.05, vs HS + RT at the same time point (15 min or 3h);cP<0.05, vs HS + TWI at the same time point;dP<0.05, vs 15 min with the same cooling treatment (RT; TWI; or IWI)
5 各降溫方法死亡構(gòu)成比比較 熱打擊后3 h,HS + RT組大鼠死亡6只,死亡構(gòu)成比40%,死亡大鼠口唇、舌、鼻尖及四肢末端紫紺。HS + TWI組、HS + IWI組均無大鼠死亡,合并記為HS + WI組,死亡構(gòu)成比為0,與HS + RT組比較差異有統(tǒng)計(jì)學(xué)意義(χ2=10.601,P=0.001)。見表2。

表2 各降溫方法大鼠死亡構(gòu)成比比較Tab. 2 Constituent ratio of death of rats in different cooling treatments (n, %)
目前認(rèn)為,決定熱射病預(yù)后最重要的因素為體溫高于危險(xiǎn)極值的時(shí)長,體溫在30 min內(nèi)降至40℃以下的患者均可存活[8,12]。有研究表明,CWI(1.7~14.0℃)可在20 min內(nèi)將體溫(>43.3℃)降至40℃以下[13]。本實(shí)驗(yàn)中,與RT組相比,TWI及IWI降溫速率增大,且IWI更為明顯;同時(shí),TWI和IWI顯著降低熱打擊大鼠死亡構(gòu)成比。
TGF-β和IL-10與肺泡巨噬細(xì)胞(alveolar macrophage,AM)表面TGF-β受體和IL-10受體結(jié)合,抑制AM釋放促炎介質(zhì)TNF-α、IL-6等[14]。本實(shí)驗(yàn)中,RT、TWI、IWI 15 min組肺組織TGF-β、IL-10水平較NC組顯著升高,RT、TWI、IWI 3 h組肺組織TGF-β、IL-10水平均較其對(duì)應(yīng)15 min組及NC組顯著降低,提示隨著病情發(fā)展,各降溫組TGF-β和IL-10對(duì)AM的抑制作用減弱。HS + IWI 3 h組肺組織TNF-α水平高于HS + TWI 3 h組和HS + RT 3 h組,且出現(xiàn)肺間質(zhì)水腫、出血,肺泡萎縮塌陷及腔內(nèi)出血,故IWI誘發(fā)熱打擊大鼠肺部更為嚴(yán)重的組織損傷。然而,Yang等[15]建立大鼠熱打擊模型,環(huán)境溫度16℃持續(xù)降溫2 h的方法觀察肺損傷發(fā)現(xiàn),該方法可緩解熱打擊致肺泡塌陷、間質(zhì)增寬及炎性細(xì)胞浸潤;熱打擊后88 min,與常溫環(huán)境組(26℃)相比,支氣管肺泡灌洗液促炎因子TNF-α水平顯著降低。本實(shí)驗(yàn)結(jié)果與之相反,可能為降溫過度所致。此外,本實(shí)驗(yàn)各組大鼠肺組織IL-6水平均未出現(xiàn)明顯變化,可能與AM分泌特性及實(shí)驗(yàn)終點(diǎn)時(shí)間選取較早有關(guān)[16-17],具體機(jī)制還需進(jìn)一步研究。
目前,關(guān)于熱射病救治“金標(biāo)準(zhǔn)”水浴降溫治療尚存爭議。Gagnon等[18]建議使用2℃水浴將患者直腸溫度降至38.6℃后停止降溫。然而,機(jī)體突然浸入冰水后,皮膚溫度迅速下降,誘發(fā)“冷休克”反應(yīng),在核心體溫未發(fā)生變化之前出現(xiàn)吸氣性呼吸困難、過度通氣、低碳酸血癥、心動(dòng)過速、外周血管收縮及高血壓[19]。Taylor等[20]對(duì)運(yùn)動(dòng)后高熱患者進(jìn)行水浴降溫研究發(fā)現(xiàn),TWI(26℃)可以減弱CWI(14℃)出現(xiàn)的冷休克反應(yīng)。本實(shí)驗(yàn)中TWI和IWI均使熱打擊大鼠死亡構(gòu)成比降為0,但熱打擊后3 h,IWI組肺組織促炎因子TNF-α水平高于TWI組及RT組,并出現(xiàn)明顯間質(zhì)水腫、出血,肺泡萎縮塌陷、腔內(nèi)出血,提示IWI在改善熱打擊大鼠預(yù)后的同時(shí)參與熱打擊早期急性肺損傷發(fā)生、發(fā)展過程,可能與水浴溫度低和(或)降溫時(shí)間長,機(jī)體出現(xiàn)冷應(yīng)激有關(guān);此外,TWI組肺組織促炎因子TNF-α、IL-10水平高于RT組,提示TWI亦可加重肺部炎性反應(yīng),因此確定最優(yōu)水浴溫度、水浴時(shí)長并選取最優(yōu)降溫截點(diǎn)核心體溫的研究有待完善。
本實(shí)驗(yàn)首次報(bào)道冰水浴降溫加重?zé)岽驌舸笫蠓尉植拷M織損傷,參與熱打擊早期急性肺損傷發(fā)生、發(fā)展過程。然而,實(shí)驗(yàn)中僅觀察熱打擊前期死亡情況,而肺組織的損傷是否與后期病死率相關(guān),還需進(jìn)一步觀察。此外,動(dòng)物實(shí)驗(yàn)并不能完全代替臨床實(shí)際,熱射病發(fā)病早期關(guān)于冷水浴降溫,尤其是冰水浴降溫對(duì)肺組織甚至其他臟器影響的研究任重道遠(yuǎn)。
1 宋青.熱射病,致命的中暑[J].軍醫(yī)進(jìn)修學(xué)院學(xué)報(bào),2008,29(6):453-454.
2 Leon LR, Helwig BG. Heat stroke: Role of the systemic inflammatory response[J]. J Appl Physiol, 2010, 109(6): 1980-1988.
3 Wu WS, Chou MT, Chao CM, et al. Melatonin reduces acute lung inflammation, edema, and hemorrhage in heatstroke rats[J]. Acta Pharmacol Sin, 2012, 33(6): 775-782.
4 劉志鋒,唐柚青,徐秋林,等.熱打擊后小鼠肺和腦組織病理學(xué)的改變[J].中華急診醫(yī)學(xué)雜志,2011,20(6):623-626.
5 Varghese GM, John G, Thomas K, et al. Predictors of multi-organ dysfunction in heatstroke[J]. Emerg Med J, 2005, 22(3): 185-187.
6 Chang CH, Kao CH, Chio CC, et al. Attenuating heatstroke-induced acute lung inflammation, edema, and injury in rats by exercise preconditioning[J]. J Trauma Acute Care Surg, 2013, 74(4):1052-1059.
7 Yang HH, Hou CC, Lin MT, et al. Attenuating heat-induced acute lung inflammation and injury by dextromethorphan in rats[J]. Am J Respir Cell Mol Biol, 2012, 46(3): 407-413.
8 Casa DJ, Armstrong LE, Kenny GP, et al. Exertional heat stroke:new concepts regarding cause and care[J]. Curr Sports Med Rep,2012, 11(3): 115-123.
9 陳潔坤,宋青,李瑞生,等.肝素對(duì)勞力型熱射病大鼠模型早期干預(yù)的作用[J].軍醫(yī)進(jìn)修學(xué)院學(xué)報(bào),2014,35(5):470-473.
10 張婷,宋青,周飛虎,等.經(jīng)典型與勞力性熱射病動(dòng)物模型之比較[J].解放軍醫(yī)學(xué)院學(xué)報(bào),2013,34(12):1209-1212.
11 Lord PF, Kapp DS, Hayes T, et al. Production of systemic hyperthermia in the rat[J]. Eur J Cancer Clin Oncol, 1984, 20(8):1079-1085.
12 Casa DJ, Kenny GP, Taylor NA. Immersion treatment for exertional hyperthermia: cold or temperate water?[J]. Med Sci Sports Exerc,2010, 42(7): 1246-1252.
13 Casa DJ, Mcdermott BP, Lee EC, et al. Cold water immersion: the Gold standard for exertional heatstroke treatment[J]. Exerc Sport Sci Rev, 2007, 35(3): 141-149.
14 Hussell T, Bell TJ. Alveolar macrophages: plasticity in a tissuespecific context[J]. Nat Rev Immunol, 2014, 14(2): 81-93.
15 Yang HH, Chang CP, Cheng RT, et al. Attenuation of acute lung inflammation and injury by whole body cooling in a rat heatstroke model[J/OL]. http://www.hindawi.com/journals/ bmri/2009/768086
16 鐘梓文.急性肺損傷時(shí)白細(xì)胞介素10在肺泡巨噬細(xì)胞中的表達(dá)[J].醫(yī)學(xué)綜述,2013,19(9):1555-1558.
17 Leon LR, Dineen S, Blaha MD, et al. Attenuated thermoregulatory,metabolic, and liver acute phase protein response to heat stroke in TNF receptor knockout mice[J]. Am J Physiol Regul Integr Comp Physiol, 2013, 305(12): R1421-R1432.
18 Gagnon D, Lemire BB, Casa DJ, et al. Cold-water immersion and the treatment of hyperthermia: using 38.6°C as a safe rectal temperature cooling limit[J]. J Athl Train, 2010, 45(5): 439-444.
19 Datta A, Tipton M. Respiratory responses to cold water immersion:neural pathways, interactions, and clinical Consequences awake and asleep[J]. J Appl Physiol (1985), 2006, 100(6): 2057-2064.
20 Taylor NA, Caldwell JN, Van den Heuvel AM, et al. To cool, but not too cool: that is the question--immersion cooling for hyperthermia[J]. Med Sci Sports Exerc, 2008, 40(11):1962-1969.
Comparison of effects and prognosis of ice water immersion and room temperature cooling treatments on lung inflammation in heat-induced rats
YANG Wenchao1, GAO Tieying1, HU Jie1, LI Ruisheng2, SONG Qing1
1Department of Critical Care Medicine, Chinese PLA General Hospital, Beijing 100853, China;2Laboratory Animal Center, Chinese PLA 302 Hospital, Beijing 100039, China
SONG Qing. Email: songqing3010301@sina.com
ObjectiveTo investigate the effects of ice water immersion, temperate-water immersion, and room temperature cooling treatments on constituent ratio of death, histology and related molecules in lungs of heat-induced rats.MethodsOne hundred and fifteen male SD rats were randomly divided into pulmonary injury-analyses group (n=70) and death-analyses group (n=45), and the former group included two groups: normothermic control group (NC, n=10) and heat stress group (HS, n=60). Rats in NC group were put in the room temperature chamber while rats in HS group were put in a folded heating pad with general anesthesia. When their core temperature (Tc) elevated to 42℃, cooling treatments were accomplished via room temperature (RT, n=20), temperatewater immersion (TWI, n=20) and ice water immersion (IWI, n=20). The heated rats in each group were sacrificed at the time of 15 min (n=10) or 3 h (n=10) after heat stress. The lung morphology was analyzed by hematoxylin and eosin staining, and the levels of related cytokines of the lung homogenate were analyzed by enzyme-linked immunosorbent assay. The constituent ratio of death in the death-analyses group was calculated 3 h after heat stress in HS+RT group (n=15), HS+TWI group (n=15), and HS+IWI group (n=15).ResultsCompared with HS+RT group, the constituent ratio of death in HS+TWI group and HS+IWI group decreased significantly (χ2=10.601, P=0.001). The heated rats in HS+IWI 3 h group displayed alveolar collapse, edema, hemorrhage and thickened interstitium, and the level of the pre-inflamatory cytokine TNF-α was higher than that of the NC group (P<0.05) and the related TWI and RT groups (P<0.05).ConclusionTWI and IWI can improve the prognosis of heat-induced rats, while IWI may aggravate the pulmonary inflammation and cause acute lung injury after heat stress, which suggests that it is necessary to redefine the cooling temperature and cooling time of water immersion.
heat stress; ice water immersion; lung; inflammation; rats
R 594.12
A
2095-5227(2015)03-0262-05
10.3969/j.issn.2095-5227.2015.03.017
時(shí)間:2014-11-06 10:44
http://www.cnki.net/kcms/detail/11.3275.R.20141106.1044.003.html
2014-09-03
國家自然科學(xué)基金項(xiàng)目(81050005)
Supported by the National Natural Science Foundation of China(81050005)
楊文超,女,在讀碩士。研究方向:重癥醫(yī)學(xué)。Email: wenchao66397@163.com
宋青,女,主任醫(yī)師,博士生導(dǎo)師。Email: songqing3010301@sina.com