999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

灌漿期高溫對小麥旗葉中SOD和GR活性及相關(guān)基因表達(dá)量的影響

2014-11-22 11:14:07王春微孫愛清張杰道
山東農(nóng)業(yè)科學(xué) 2014年10期

王春微 孫愛清 張杰道 等

摘要:以山農(nóng)23和濟(jì)麥20為試驗(yàn)材料,研究灌漿期(花后10~20 d)高溫對小麥旗葉中超氧化物歧化酶(SOD)和谷胱甘肽還原酶(GR)活性及相關(guān)基因表達(dá)量的影響。結(jié)果表明,在高溫脅迫條件下,山農(nóng)23的SOD活性一直顯著高于對照,而濟(jì)麥20的SOD活性變化呈先升高后降低的趨勢。山農(nóng)23中Fe-SOD和Mn-SOD表達(dá)量的變化與SOD活性的變化趨勢相似,但Cu/Zn-SOD表達(dá)量的變化與SOD活性的變化趨勢不同。濟(jì)麥20中3個(gè)SOD基因表達(dá)量的變化均與SOD活性的變化基本一致。高溫脅迫條件下兩個(gè)小麥品種的GR活性均呈現(xiàn)先升高后降低的趨勢,山農(nóng)23中GR表達(dá)量的變化與GR活性的變化趨勢基本一致,濟(jì)麥20中GR表達(dá)量的變化早于GR活性的變化。總體來看,高溫脅迫條件下山農(nóng)23具有較強(qiáng)的抗氧化能力,F(xiàn)e-SOD和Mn-SOD基因?qū)OD活性起主要作用,抗氧化酶相關(guān)基因?qū)酀{期高溫脅迫的響應(yīng)比酶活性更敏感。

關(guān)鍵詞:小麥;高溫;超氧化物歧化酶;谷胱甘肽還原酶;基因表達(dá)

中圖分類號:S512.103.4文獻(xiàn)標(biāo)識號:A文章編號:1001-4942(2014)10-0030-05

3討論與結(jié)論

高溫引起抗氧化酶活性的改變可能因植物物種、品種、脅迫強(qiáng)度和脅迫持續(xù)時(shí)間的不同而異。Hu等[18]通過試驗(yàn)發(fā)現(xiàn)高溫脅迫(42℃,1 h)能增加玉米葉片中SOD和GR的活性。Xue等[19]發(fā)現(xiàn)高溫使水稻苗中SOD活性顯著高于對照。本研究發(fā)現(xiàn),高溫處理過程中山農(nóng)23的SOD活性一直高于對照,濟(jì)麥20的SOD活性變化呈現(xiàn)先升高后降低的趨勢;兩個(gè)品種的GR活性雖然都呈先升高后降低的趨勢,但是濟(jì)麥20開始下降的時(shí)間早于山農(nóng)23。表明高溫脅迫對不同耐熱性小麥品種的抗氧化酶活性的影響不同,山農(nóng)23有較高的抗氧化酶活性和較強(qiáng)的耐熱性。

高溫引發(fā)各種植物響應(yīng),包括調(diào)控基因的表達(dá)。研究在RNA水平上的基因表達(dá)與植物耐熱性的關(guān)系,能對抗氧化酶激活機(jī)制有更深入地了解,而不僅僅停留在酶活性方面。本研究發(fā)現(xiàn),濟(jì)麥20中三種SOD基因的變化趨勢與酶活性的變化趨勢基本一致。山農(nóng)23中Fe-SOD和Mn-SOD在處理過程中的變化趨勢與高溫處理?xiàng)l件下SOD活性的變化趨勢基本一致,但是Cu/Zn-SOD在處理2 d后表達(dá)量一直低于對照,這與SOD活性的變化趨勢不一致。前人許多試驗(yàn)也發(fā)現(xiàn)非生物脅迫過程中Cu/Zn-SOD的轉(zhuǎn)錄水平的變化與SOD變化不完全一致。Xu等[10]研究發(fā)現(xiàn)早熟禾中葉綠體Cu/Zn-SOD與細(xì)胞質(zhì)Cu/Zn-SOD在干旱脅迫后轉(zhuǎn)錄水平顯著升高,但是SOD活性卻呈下降的趨勢。Kurepa等 (1997)[20]通過研究發(fā)現(xiàn)Cu2+過量積累能使葉綠體Cu/Zn-SOD上調(diào),但是SOD活性沒有發(fā)生顯著變化。綜上所述,F(xiàn)e-SOD和Mn-SOD在抵抗高溫?fù)p傷方面起重要作用。

山農(nóng)23的GR轉(zhuǎn)錄水平的變化比酶活性的變化早2 d,說明抗氧化酶相關(guān)基因?qū)Ω邷孛{迫的響應(yīng)較酶活性更敏感。值得注意的是,在高溫處理?xiàng)l件下濟(jì)麥20的GR基因表達(dá)量在處理4 d時(shí)開始下調(diào),但酶活性在8 d開始低于對照,原因可能是GR在處理前期超表達(dá)或者GR活性的變化不是由轉(zhuǎn)錄水平調(diào)控的,更可能受轉(zhuǎn)錄后水平調(diào)控。

參考文獻(xiàn):

[1]Maestri E, Klueva N, Perrotta C, et al. Molecular genetics of heat tolerance and heat shock proteins in cereals[J]. Plant Molecular Biology, 2002, 48(5/6): 667-681.

[2]Hasanuzzaman M, Nahar K, Alam M M, et al. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants[J]. International Journal of Molecular Sciences, 2013, 14(5): 9643-9684.

[3]Melchiorre M, Robert G A N, Trippi V, et al. Superoxide dismutase and glutathione reductase overexpression in wheat protoplast: photooxidative stress tolerance and changes in cellular redox state[J]. Plant Growth Regulation, 2009, 57(1): 57-68.

[4]Miller G, Suzuki N, Ciftci-Yilmaz S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant, Cell & Environment, 2010, 33(4): 453-467.

[5]De Pinto M C, Locato V, De Gara L. Redox regulation in plant programmed cell death[J]. Plant, Cell & Environment, 2012, 35(2): 234-244.

[6]Farooq M, Aziz T, Hussain M, et al. Glycinebetaine improves chilling tolerance in hybrid maize[J]. Journal of Agronomy and Crop Science, 2008, 194(2): 152-160.

[7]Gupta N K, Agarwal S, Agarwal V P, et al. Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings[J]. Acta Physiologiae Plantarum, 2013,35(6):1837-1842.

[8]馬旭俊,朱大海. 植物超氧化物歧化酶(SOD)的研究進(jìn)展[J]. 遺傳,2003, 25(2): 225-231.

[9]Foyer C H, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism[J]. Planta, 1976, 133(1): 21-25.

[10]Xu L, Han L, Huang B. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery[J]. Journal of the American Society for Horticultural Science, 2011, 136(4): 247-255.

[11]Almeselmani M, Deshmukh P S, Sairam R K. High temperature stress tolerance in wheat genotypes: role of antioxidant defence enzymes[J]. Acta Agronomica Hungarica, 2009, 57(1): 1-14.

[12]Sairam R K, Srivastava G C, Saxena D C. Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes[J]. Biologia Plantarum, 2000, 43(2): 245-251.

[13]Tan W, Liu J, Dai T, et al. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging[J]. Photosynthetica, 2008, 46(1): 21-27.

[14]Arakawa N, Tsutsumi K, Sanceda N G, et al. A rapid and sensitive method for the determination of ascorbic acid using 4, 7-diphenyl-l, 10-phenanthroline[J]. Agricultural and Biological Chemistry, 1981, 45(5): 1289-1290.

[15]Kanematsu S, Asada K. Characteristic amino acid sequences of chloroplast and cytosol isozymes of CuZn-superoxide dismutase in spinach, rice and horsetail[J]. Plant and Cell physiology, 1990, 31(1): 99-112.

[16]Smith M W, Doolittle R F. A comparison of evolutionary rates of the two major kinds of superoxide dismutase[J]. Journal of Molecular Evolution, 1992, 34(2): 175-184.

[17]Ogawa K, Kanematsu S, Asada K. Intra-and extra-cellular localization of “cytosolic” CuZn-superoxide dismutase in spinach leaf and hypocotyl[J]. Plant and Cell Physiology, 1996, 37(6): 790-799.

[18]Hu X, Liu R, Li Y, et al. Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress[J]. Plant Growth Regulation, 2010, 60(3): 225-235.

[19]Xue D, Jiang H, Hu J, et al. Characterization of physiological response and identification of associated genes under heat stress in rice seedlings[J]. Plant Physiology and Biochemistry, 2012,61:46-53.

[20]Kurepa J, Van Montagu M, Inz E D. Expression of sodCp and sodB genes in Nicotiana tabacum: effects of light and copper excess[J]. Journal of Experimental Botany, 1997, 48(12): 2007-2014.

[7]Gupta N K, Agarwal S, Agarwal V P, et al. Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings[J]. Acta Physiologiae Plantarum, 2013,35(6):1837-1842.

[8]馬旭俊,朱大海. 植物超氧化物歧化酶(SOD)的研究進(jìn)展[J]. 遺傳,2003, 25(2): 225-231.

[9]Foyer C H, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism[J]. Planta, 1976, 133(1): 21-25.

[10]Xu L, Han L, Huang B. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery[J]. Journal of the American Society for Horticultural Science, 2011, 136(4): 247-255.

[11]Almeselmani M, Deshmukh P S, Sairam R K. High temperature stress tolerance in wheat genotypes: role of antioxidant defence enzymes[J]. Acta Agronomica Hungarica, 2009, 57(1): 1-14.

[12]Sairam R K, Srivastava G C, Saxena D C. Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes[J]. Biologia Plantarum, 2000, 43(2): 245-251.

[13]Tan W, Liu J, Dai T, et al. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging[J]. Photosynthetica, 2008, 46(1): 21-27.

[14]Arakawa N, Tsutsumi K, Sanceda N G, et al. A rapid and sensitive method for the determination of ascorbic acid using 4, 7-diphenyl-l, 10-phenanthroline[J]. Agricultural and Biological Chemistry, 1981, 45(5): 1289-1290.

[15]Kanematsu S, Asada K. Characteristic amino acid sequences of chloroplast and cytosol isozymes of CuZn-superoxide dismutase in spinach, rice and horsetail[J]. Plant and Cell physiology, 1990, 31(1): 99-112.

[16]Smith M W, Doolittle R F. A comparison of evolutionary rates of the two major kinds of superoxide dismutase[J]. Journal of Molecular Evolution, 1992, 34(2): 175-184.

[17]Ogawa K, Kanematsu S, Asada K. Intra-and extra-cellular localization of “cytosolic” CuZn-superoxide dismutase in spinach leaf and hypocotyl[J]. Plant and Cell Physiology, 1996, 37(6): 790-799.

[18]Hu X, Liu R, Li Y, et al. Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress[J]. Plant Growth Regulation, 2010, 60(3): 225-235.

[19]Xue D, Jiang H, Hu J, et al. Characterization of physiological response and identification of associated genes under heat stress in rice seedlings[J]. Plant Physiology and Biochemistry, 2012,61:46-53.

[20]Kurepa J, Van Montagu M, Inz E D. Expression of sodCp and sodB genes in Nicotiana tabacum: effects of light and copper excess[J]. Journal of Experimental Botany, 1997, 48(12): 2007-2014.

[7]Gupta N K, Agarwal S, Agarwal V P, et al. Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings[J]. Acta Physiologiae Plantarum, 2013,35(6):1837-1842.

[8]馬旭俊,朱大海. 植物超氧化物歧化酶(SOD)的研究進(jìn)展[J]. 遺傳,2003, 25(2): 225-231.

[9]Foyer C H, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism[J]. Planta, 1976, 133(1): 21-25.

[10]Xu L, Han L, Huang B. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery[J]. Journal of the American Society for Horticultural Science, 2011, 136(4): 247-255.

[11]Almeselmani M, Deshmukh P S, Sairam R K. High temperature stress tolerance in wheat genotypes: role of antioxidant defence enzymes[J]. Acta Agronomica Hungarica, 2009, 57(1): 1-14.

[12]Sairam R K, Srivastava G C, Saxena D C. Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes[J]. Biologia Plantarum, 2000, 43(2): 245-251.

[13]Tan W, Liu J, Dai T, et al. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging[J]. Photosynthetica, 2008, 46(1): 21-27.

[14]Arakawa N, Tsutsumi K, Sanceda N G, et al. A rapid and sensitive method for the determination of ascorbic acid using 4, 7-diphenyl-l, 10-phenanthroline[J]. Agricultural and Biological Chemistry, 1981, 45(5): 1289-1290.

[15]Kanematsu S, Asada K. Characteristic amino acid sequences of chloroplast and cytosol isozymes of CuZn-superoxide dismutase in spinach, rice and horsetail[J]. Plant and Cell physiology, 1990, 31(1): 99-112.

[16]Smith M W, Doolittle R F. A comparison of evolutionary rates of the two major kinds of superoxide dismutase[J]. Journal of Molecular Evolution, 1992, 34(2): 175-184.

[17]Ogawa K, Kanematsu S, Asada K. Intra-and extra-cellular localization of “cytosolic” CuZn-superoxide dismutase in spinach leaf and hypocotyl[J]. Plant and Cell Physiology, 1996, 37(6): 790-799.

[18]Hu X, Liu R, Li Y, et al. Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress[J]. Plant Growth Regulation, 2010, 60(3): 225-235.

[19]Xue D, Jiang H, Hu J, et al. Characterization of physiological response and identification of associated genes under heat stress in rice seedlings[J]. Plant Physiology and Biochemistry, 2012,61:46-53.

[20]Kurepa J, Van Montagu M, Inz E D. Expression of sodCp and sodB genes in Nicotiana tabacum: effects of light and copper excess[J]. Journal of Experimental Botany, 1997, 48(12): 2007-2014.

主站蜘蛛池模板: 久久精品国产亚洲AV忘忧草18| 亚洲欧洲日产国产无码AV| 8090成人午夜精品| 免费一级大毛片a一观看不卡 | 欧美成人在线免费| 被公侵犯人妻少妇一区二区三区| 88av在线| 欧美一区二区福利视频| 国产免费好大好硬视频| 自拍亚洲欧美精品| 亚洲区一区| 久久久久88色偷偷| 91免费国产高清观看| 亚洲区第一页| 在线观看国产精品日本不卡网| 一区二区三区高清视频国产女人| 日本AⅤ精品一区二区三区日| 中文字幕久久波多野结衣| 欧洲在线免费视频| 小13箩利洗澡无码视频免费网站| 精品国产成人国产在线| 亚洲欧美精品一中文字幕| 亚洲天堂免费观看| 日韩毛片免费视频| 国产导航在线| 亚洲an第二区国产精品| 国产免费怡红院视频| 丁香婷婷综合激情| 香蕉视频国产精品人| 大香伊人久久| 国产成人亚洲毛片| 午夜国产不卡在线观看视频| 免费毛片全部不收费的| 国产无码在线调教| www中文字幕在线观看| 日韩av在线直播| 激情乱人伦| 99在线观看免费视频| 免费又爽又刺激高潮网址| 99精品高清在线播放| 亚洲美女高潮久久久久久久| 91成人在线观看| 亚洲国产天堂久久综合226114| 国产 日韩 欧美 第二页| 天天躁日日躁狠狠躁中文字幕| 亚洲视频a| 高清不卡毛片| 久久国产成人精品国产成人亚洲 | 色偷偷一区| 国产成人免费观看在线视频| 国精品91人妻无码一区二区三区| 国产精品无码AV中文| 久久99国产乱子伦精品免| 爽爽影院十八禁在线观看| 99草精品视频| 日韩a级毛片| 亚洲av色吊丝无码| 国产h视频免费观看| 精品在线免费播放| 伊人久综合| 网友自拍视频精品区| 在线免费观看AV| 国产精品福利在线观看无码卡| 精品久久综合1区2区3区激情| 国产特级毛片| 亚洲最大福利视频网| 国产91视频免费观看| 日韩欧美国产区| 国产激情无码一区二区免费| 97久久精品人人做人人爽| 不卡无码h在线观看| 亚洲欧洲美色一区二区三区| 国产精品免费p区| 国产午夜无码专区喷水| 亚洲精品中文字幕午夜| 午夜激情婷婷| 亚洲精品中文字幕午夜| 又爽又大又黄a级毛片在线视频| 久热99这里只有精品视频6| 国产精品男人的天堂| 91青青视频| 色有码无码视频|