999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

梯形直覺模糊數排序方法及在多屬性決策中應用

2014-10-27 19:12:13南江霞
經濟數學 2014年3期

南江霞

摘 要 基于梯形直覺模糊數的值和模糊度兩個特征,一類梯形直覺模糊數的排序方法被研究.首先,給出了梯形直覺模糊數的定義、運算法則和截集.其次,定義了梯形直覺模糊數關于隸屬度和非隸屬度的值和模糊度,以及值的指標和模糊度的指標.最后,給出了梯形直覺模糊數的排序方法,并將其應用到屬性值為梯形直覺模糊數的多屬性決策問題中.

關鍵詞 梯形直覺模糊數;梯形直覺模糊數的排序;多屬性決策

中圖分類號 C934 文獻標識碼 A

A Ranking Method of Trapezoidal Intuitionistic Fuzzy

Numbers and the Application to Decision Making

NAN Jiangxia

(School of Mathematics and Computing Science,Guilin University of Electronic Technology, Guilin, Guangxi 541004,China)

Abstract The ranking of trapezoidal intuitionistic fuzzy numbers (TIFNs) was solved by the value and ambiguity based ranking method developed in this paper. Firstly, the concept of TIFNs was introduced, and arithmetic operations and cut sets over TIFNs were investigated. Then, the values and ambiguities of the membership degree and the non-membership degree for TIFNs were defined as well as the valueindex and ambiguityindex. Finally, a value and ambiguity based ranking method was developed and applied to solve multiattribute decision making problems in which the ratings of alternatives on attributes were expressed using TIFNs. A numerical example was examined to demonstrate the implementation process and applicability of the method proposed.

Key words trapezoidal intuitionistic fuzzy number; ranking of trapezoidal intuitionistic fuzzy numbers; multiattribute decision making

1 引 言

Atanassov[1,2]提出的直覺模糊集(intuitionistic fuzzy)是模糊集的擴展,引起許多學者的關注,取得了大量研究成果.直覺模糊集已經被成功應用到一些領域,如:多屬性決策[3,4]、醫療診斷[5]、模式識別[6]等領域.直覺模糊數是一類特殊的直覺模糊集,更容易表示一些實際問題中的不確定的量.直覺模糊數受到了一些研究者的關注,已經定義了幾種類形的直覺模糊數及其相應的排序方法. Mitchell[7]將直覺模糊數定義為模糊數的全體,介紹了一個直覺模糊數的排序方法. Nayagam et al [8] 定義了一類直覺模糊數,將Chen 與 Hwang[9]提出的模糊數的得分(scoring)推廣到直覺模糊數,給出了直覺模糊數的排序方法. Grzegoraewski[10] 定義了一類直覺模糊數及其期望區間,并給出了一種直覺模糊數的排序方法. Shu 等[11] 通過增加一個非隸屬度,定義了一類三角直覺模糊數,但沒有給出其排序方法. Nan[12]等研究了文獻[11]的三角直覺模糊數的均值排序方法,并將該方法應用于直覺模糊矩陣對策問題. Li[13]進一步研究了三角直覺模糊數的比率排序方法,并將該方法應用于多屬性決策問題.Zhang[14]等研究了三角直覺模糊數的折中率排序方法,并將該方法應用于多屬性決策問題.梯形直覺模糊數是三角模糊數的推廣,王堅強等[15]將文獻[11]中的三角直覺模糊數的定義推廣到梯形直覺模糊數,并根據梯形直覺模糊數的期望值區間對此類梯形直覺模糊數進行排序.萬樹平[16]等研究方案屬性值為梯形直覺模糊數的多屬性群決策問題,給出了一種基于可能性均值-方差的梯形直覺模糊數的排序方法.目前研究梯形直覺模糊數排序的文獻比較匱乏.因此,本文研究一類梯形直覺模糊數的排序方法,將該方法應用到多屬性決策問題中.本文提出的方法根據梯形直覺模糊數的值和模糊度(ambiguity)的指標,將梯形直覺模糊數的排序轉化為實數的比較,方法原理簡單、計算量小、易于實現.

2 梯形直覺模糊數的基本概念

2.1 梯形直覺模糊數的定義與運算法則

梯形直覺模糊數是特殊的直覺模糊數,又是三角直覺模糊數和梯形模糊數的推廣,其表述簡單,在模糊決策問題中便于表示不確定的量.首先給出梯形直覺模糊數的定義為:

5 小 結

本文討論了梯形直覺模糊數的兩個特征:值與模糊度,定義了梯形直覺模糊數的值的指標和模糊度的指標.基于這兩個指標給出了梯形直覺模糊數的排序方法.并且將提出的排序方法用于解決屬性值為梯形直覺模糊數的多屬性決策問題,說明提出的排序方法容易實施且有直觀的解釋. 由于梯形直覺模糊數是梯形模糊數的推廣,其他已有的梯形模糊數的排序方法也可以拓展到梯形直覺模糊數的排序中,今后將研究更有效的梯形直覺模糊數的排序方法.endprint

參考文獻

[1] K T ATANASSOV. Intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.

[2] K T ATANASSOV, Intuitionistic fuzzy sets:theory and Applications [M]. Heidelberg: PhysicaVerlag HD, 1999.

[3] D F LI, Y C WANG, S LIU. Fractional programming methodology for multiattribute group decisionmaking using IFS [J]. Applied Soft Computing, 2009, 9(1): 219-225.

[4] D F LI. Extension of the LINMAP for multiattribute decision making under atanassov intuitionistic fuzzy environment [J]. Fuzzy Optimization and Decision Making, 2008, 7(1): 17-34.

[5] S K DE, R BISWAS, A R ROY. An application of intuitionistic fuzzy sets in medical diagnosis [J]. Fuzzy Sets and Systems, 2001, 117(6): 209-213.

[6] D F LI, C T CHENG. New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions [J]. Pattern Recognition Letters, 2002, 23(4): 221-225.

[7] H B MITCHELL. Ranking intuitionistic fuzzy numbers[J]. International Journal of Uncertainty Fuzziness and Knowledge Based Systems, 2004, 12(3): 377-386.

[8] V G NAYAGAM, G VENKATESHWARI, G SIVARAMAN. Ranking of intuitionistic fuzzy numbers [C]//IEEE International Conference on Fuzzy Systems,Hong Kong, 2008: 1973-1976.

[9] S J CHEN, C L HWANG. Fuzzy multiple attribute decision making [M]. New York: Spring Verlag, Berlin Heildelberg, 1992.

[10]P GRZEGRORZEWSKI. The hamming distance between intuitionistic fuzzy sets [C]//The Proceeding of the IFSA 2003 World Congress, ISTANBUL, 2003.

[11]M H SHU, C H CHENG, J R CHANG. Using intuitionistic fuzzy sets for faulttree analysis on printed circuit board assembly[J]. Microelectronics Reliability, 2006, 46(2): 2139–2148.

[12]J X NAN, D F LI, M J ZHANG. A lexicographic method for matrix games with payoffs of triangular intuitionistic fuzzy numbers[J]. International Journal of Computational Intelligence Systems, 2010,3(3):280-289.

[13]D F LI. A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems [J]. Computers and Mathematics with Applications. 2010, 60(6): 1557-1570.

[14]M J ZHANG, J X NAN. A compromise ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems[J].Iranian Journal of Fuzzy Systems, 2013,10(6), 21-37.

[15]王堅強, 張忠. 基于直覺模糊數的信息不完全的多準則規劃方法[J]. 控制與決策, 2009, 24 (2): 226-230.

[16]萬樹平, 董九英. 多屬性群決策的直覺梯形模糊數法[J]. 控制與決策, 2010, 25(5): 773-776.

[17]D DUBOIS, H PRADE. Fuzzy Sets and Systems: Theory and Applications[M]. Mathematics in Science and Engineering 144 Academic Press, New York, 1980.

[18]趙雪婷, 楊辰陸, 秋君. 基于具有LR型模糊輸出回歸模型的上證指數預測[J]. 經濟數學, 2013, 30(4): 106-110.

[19]X WANG, E E KERRE. Reasonable properties for the ordering of fuzzy quantities (I) [J].Fuzzy Sets and Systems, 2001, 118(4): 375-385.endprint

參考文獻

[1] K T ATANASSOV. Intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.

[2] K T ATANASSOV, Intuitionistic fuzzy sets:theory and Applications [M]. Heidelberg: PhysicaVerlag HD, 1999.

[3] D F LI, Y C WANG, S LIU. Fractional programming methodology for multiattribute group decisionmaking using IFS [J]. Applied Soft Computing, 2009, 9(1): 219-225.

[4] D F LI. Extension of the LINMAP for multiattribute decision making under atanassov intuitionistic fuzzy environment [J]. Fuzzy Optimization and Decision Making, 2008, 7(1): 17-34.

[5] S K DE, R BISWAS, A R ROY. An application of intuitionistic fuzzy sets in medical diagnosis [J]. Fuzzy Sets and Systems, 2001, 117(6): 209-213.

[6] D F LI, C T CHENG. New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions [J]. Pattern Recognition Letters, 2002, 23(4): 221-225.

[7] H B MITCHELL. Ranking intuitionistic fuzzy numbers[J]. International Journal of Uncertainty Fuzziness and Knowledge Based Systems, 2004, 12(3): 377-386.

[8] V G NAYAGAM, G VENKATESHWARI, G SIVARAMAN. Ranking of intuitionistic fuzzy numbers [C]//IEEE International Conference on Fuzzy Systems,Hong Kong, 2008: 1973-1976.

[9] S J CHEN, C L HWANG. Fuzzy multiple attribute decision making [M]. New York: Spring Verlag, Berlin Heildelberg, 1992.

[10]P GRZEGRORZEWSKI. The hamming distance between intuitionistic fuzzy sets [C]//The Proceeding of the IFSA 2003 World Congress, ISTANBUL, 2003.

[11]M H SHU, C H CHENG, J R CHANG. Using intuitionistic fuzzy sets for faulttree analysis on printed circuit board assembly[J]. Microelectronics Reliability, 2006, 46(2): 2139–2148.

[12]J X NAN, D F LI, M J ZHANG. A lexicographic method for matrix games with payoffs of triangular intuitionistic fuzzy numbers[J]. International Journal of Computational Intelligence Systems, 2010,3(3):280-289.

[13]D F LI. A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems [J]. Computers and Mathematics with Applications. 2010, 60(6): 1557-1570.

[14]M J ZHANG, J X NAN. A compromise ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems[J].Iranian Journal of Fuzzy Systems, 2013,10(6), 21-37.

[15]王堅強, 張忠. 基于直覺模糊數的信息不完全的多準則規劃方法[J]. 控制與決策, 2009, 24 (2): 226-230.

[16]萬樹平, 董九英. 多屬性群決策的直覺梯形模糊數法[J]. 控制與決策, 2010, 25(5): 773-776.

[17]D DUBOIS, H PRADE. Fuzzy Sets and Systems: Theory and Applications[M]. Mathematics in Science and Engineering 144 Academic Press, New York, 1980.

[18]趙雪婷, 楊辰陸, 秋君. 基于具有LR型模糊輸出回歸模型的上證指數預測[J]. 經濟數學, 2013, 30(4): 106-110.

[19]X WANG, E E KERRE. Reasonable properties for the ordering of fuzzy quantities (I) [J].Fuzzy Sets and Systems, 2001, 118(4): 375-385.endprint

參考文獻

[1] K T ATANASSOV. Intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.

[2] K T ATANASSOV, Intuitionistic fuzzy sets:theory and Applications [M]. Heidelberg: PhysicaVerlag HD, 1999.

[3] D F LI, Y C WANG, S LIU. Fractional programming methodology for multiattribute group decisionmaking using IFS [J]. Applied Soft Computing, 2009, 9(1): 219-225.

[4] D F LI. Extension of the LINMAP for multiattribute decision making under atanassov intuitionistic fuzzy environment [J]. Fuzzy Optimization and Decision Making, 2008, 7(1): 17-34.

[5] S K DE, R BISWAS, A R ROY. An application of intuitionistic fuzzy sets in medical diagnosis [J]. Fuzzy Sets and Systems, 2001, 117(6): 209-213.

[6] D F LI, C T CHENG. New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions [J]. Pattern Recognition Letters, 2002, 23(4): 221-225.

[7] H B MITCHELL. Ranking intuitionistic fuzzy numbers[J]. International Journal of Uncertainty Fuzziness and Knowledge Based Systems, 2004, 12(3): 377-386.

[8] V G NAYAGAM, G VENKATESHWARI, G SIVARAMAN. Ranking of intuitionistic fuzzy numbers [C]//IEEE International Conference on Fuzzy Systems,Hong Kong, 2008: 1973-1976.

[9] S J CHEN, C L HWANG. Fuzzy multiple attribute decision making [M]. New York: Spring Verlag, Berlin Heildelberg, 1992.

[10]P GRZEGRORZEWSKI. The hamming distance between intuitionistic fuzzy sets [C]//The Proceeding of the IFSA 2003 World Congress, ISTANBUL, 2003.

[11]M H SHU, C H CHENG, J R CHANG. Using intuitionistic fuzzy sets for faulttree analysis on printed circuit board assembly[J]. Microelectronics Reliability, 2006, 46(2): 2139–2148.

[12]J X NAN, D F LI, M J ZHANG. A lexicographic method for matrix games with payoffs of triangular intuitionistic fuzzy numbers[J]. International Journal of Computational Intelligence Systems, 2010,3(3):280-289.

[13]D F LI. A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems [J]. Computers and Mathematics with Applications. 2010, 60(6): 1557-1570.

[14]M J ZHANG, J X NAN. A compromise ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems[J].Iranian Journal of Fuzzy Systems, 2013,10(6), 21-37.

[15]王堅強, 張忠. 基于直覺模糊數的信息不完全的多準則規劃方法[J]. 控制與決策, 2009, 24 (2): 226-230.

[16]萬樹平, 董九英. 多屬性群決策的直覺梯形模糊數法[J]. 控制與決策, 2010, 25(5): 773-776.

[17]D DUBOIS, H PRADE. Fuzzy Sets and Systems: Theory and Applications[M]. Mathematics in Science and Engineering 144 Academic Press, New York, 1980.

[18]趙雪婷, 楊辰陸, 秋君. 基于具有LR型模糊輸出回歸模型的上證指數預測[J]. 經濟數學, 2013, 30(4): 106-110.

[19]X WANG, E E KERRE. Reasonable properties for the ordering of fuzzy quantities (I) [J].Fuzzy Sets and Systems, 2001, 118(4): 375-385.endprint

主站蜘蛛池模板: 人妻丰满熟妇啪啪| 国产午夜精品一区二区三区软件| 久久综合婷婷| 伊人久久大香线蕉影院| 国产精品私拍在线爆乳| 亚洲欧美另类日本| 久久99精品久久久久久不卡| 操操操综合网| 亚洲国产欧美国产综合久久| 亚洲男人天堂2020| 国产成人亚洲精品色欲AV | 欧美日韩中文字幕二区三区| 午夜无码一区二区三区| 91成人免费观看在线观看| 亚洲黄色成人| 色综合成人| 亚洲视频欧美不卡| 国产欧美高清| 人妻丰满熟妇av五码区| 乱人伦视频中文字幕在线| 亚洲三级色| 成人日韩欧美| 一级毛片免费高清视频| 欧美 亚洲 日韩 国产| 亚洲乱码精品久久久久..| 在线另类稀缺国产呦| 欧美激情视频二区| 国产精品3p视频| 日韩天堂视频| 一区二区午夜| 欧美一级片在线| 亚洲欧洲日韩久久狠狠爱| 亚欧乱色视频网站大全| 国产综合精品一区二区| 国产永久在线视频| 最新痴汉在线无码AV| 久久香蕉国产线看精品| 国产成人精品免费av| 黄色网站在线观看无码| 国内99精品激情视频精品| 国产美女丝袜高潮| 特级做a爰片毛片免费69| 无码AV动漫| 巨熟乳波霸若妻中文观看免费| 91福利在线观看视频| 中文字幕在线观看日本| www成人国产在线观看网站| 不卡视频国产| 国产剧情国内精品原创| 色综合中文综合网| 国产精品网曝门免费视频| 999国内精品久久免费视频| 日韩A级毛片一区二区三区| 免费99精品国产自在现线| 久久香蕉国产线| 精品国产成人a在线观看| 国产高清国内精品福利| 波多野结衣无码视频在线观看| 亚洲不卡影院| 国产午夜福利在线小视频| 国禁国产you女视频网站| 亚洲综合色婷婷中文字幕| 日韩美一区二区| 一级毛片免费观看久| 亚洲精品中文字幕无乱码| 狠狠操夜夜爽| 国产精品视频公开费视频| 福利在线不卡一区| 91亚洲免费| 日韩美毛片| 国产成年女人特黄特色大片免费| 国产女人喷水视频| 一级成人欧美一区在线观看| 欧美精品v欧洲精品| jijzzizz老师出水喷水喷出| 22sihu国产精品视频影视资讯| 在线综合亚洲欧美网站| 国产成人1024精品| 一本一本大道香蕉久在线播放| 欧美不卡视频在线| 亚洲人成高清| 国产视频一区二区在线观看|