999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

On the Complete Moment Convergence for Arrays

2014-10-27 18:39:55鄧總綱
經濟數學 2014年3期

鄧總綱

Abstract Let Xni;i≥1,n≥1 be an array of rowwise  mixing random variables. The authors discuss the complete moment convergence for  mixing random variables without assumptions of identical distribution and stochastic domination. The results obtained generalize and improve the corresponding theorems of Hu and Taylor (1997), Zhu (2006), Wu and Zhu (2010).

Key words arrays of rowwise mixing random variables;complete moment convergence; complete convergence

中圖分類號 AMS(2010) 60F15 文獻標識碼 A



1 Introduction

The concept of complete convergence was introduced by Hsu and Robbins[1] as follows: A sequence Xn;n≥1 of random variables is called to converge completely to the constant λ if

∑

SymboleB@ n=1PXn-λ>ε<

SymboleB@  for ε>0. (1)

In view of the BorelCantelli lemma, this implies that Xn→λ almost surely. Therefore the complete convergence is a very important tool in establishing almost sure convergence of summation of random variables. Hsu and Robbins[1] proved that the sequence of arithmetic means of independent and identically distributed (i.i.d.) random variables converges completely to the expected value if the variance of the summands is finite. Erd¨os[2] proved the converse.

The result of HsuRobbinsErd¨os is a fundamental theorem in probability theory and has been generalized and extended in several directions by many authors. One of the most important generalizations is Baum and Katz[3] for the strong law of large numbers as follows: Let p≥1α and 12<α≤1. Let Xn;n≥1 be a sequence of i.i.d. random variables with EXn=0. Then the following statements are equivalent:

The desired results (13) and (14) follow from the above statement. This completes the proof of Corollary 1.

On the complete moment convergence for arrays of rowwise mixing random variables in the evaluation of risk estimation、advantage inspection (see Marciniak and Wesolowski (1999) and Fujioka (2011)), reliability (see Gupta and Akman (1998)), life test (see Mendenhall and Lehman (1960)), insurance, financial mathematics (see Ramsay (1993)), complex system (see Jurlewicz and Weron (2002)) and from financial and predict the actual problem and so on all have quite a wide range of applications.

References

[1] P L HSU, H ROBBINS. Complete convergence and the strong law of large numbers[J]. Proceedings of the National Academy of Sciences of the United States of America, 1947,33:25-31.endprint

[2] P ERDOS. Remark on my paper “on a theorem of Hsu and Robbins”[J]. Annals of Mathematical Statistics, 1950,20:286-291.

[3] L E BAUM, M KATZ. Convergence rates in the law of large numbers[J]. Transactions of American Mathematical Society, 1965,120:108-123.

[4] Y S CHOW . On the rate of moment convergence of sample sums and extremes[J]. Bulletin of the Institute of Mathematics Academia Sinica. 1988.16:177-201.

[5] T C HU, R L TAYLOR. On the strong law for arrays and for the bootstrap mean and variance[J]. International Journal of Mathematics and Mathematical Science, 1997,20(2): 375-382.

[6] M H ZHU. Strong laws of large numbers for arrays of rowwise mixing random variables[J]. Discrete Dynamics in Nature and Society,2007(74296):6.

[7] Y F WU, D J ZHU. Convergence properties of partial sums for arrays of rowwise negatively orthant dependent random variables[J]. Journal of the Korean Statistical Society, 2000,39(2):189-197.

[8] S UTEV, M PELIGRAD. Maximal inequalities and an invariance principle for a class of weakly dependent random variables[J]. Journal of Theoretical Probability, 2003,16(1):101-115.endprint

[2] P ERDOS. Remark on my paper “on a theorem of Hsu and Robbins”[J]. Annals of Mathematical Statistics, 1950,20:286-291.

[3] L E BAUM, M KATZ. Convergence rates in the law of large numbers[J]. Transactions of American Mathematical Society, 1965,120:108-123.

[4] Y S CHOW . On the rate of moment convergence of sample sums and extremes[J]. Bulletin of the Institute of Mathematics Academia Sinica. 1988.16:177-201.

[5] T C HU, R L TAYLOR. On the strong law for arrays and for the bootstrap mean and variance[J]. International Journal of Mathematics and Mathematical Science, 1997,20(2): 375-382.

[6] M H ZHU. Strong laws of large numbers for arrays of rowwise mixing random variables[J]. Discrete Dynamics in Nature and Society,2007(74296):6.

[7] Y F WU, D J ZHU. Convergence properties of partial sums for arrays of rowwise negatively orthant dependent random variables[J]. Journal of the Korean Statistical Society, 2000,39(2):189-197.

[8] S UTEV, M PELIGRAD. Maximal inequalities and an invariance principle for a class of weakly dependent random variables[J]. Journal of Theoretical Probability, 2003,16(1):101-115.endprint

[2] P ERDOS. Remark on my paper “on a theorem of Hsu and Robbins”[J]. Annals of Mathematical Statistics, 1950,20:286-291.

[3] L E BAUM, M KATZ. Convergence rates in the law of large numbers[J]. Transactions of American Mathematical Society, 1965,120:108-123.

[4] Y S CHOW . On the rate of moment convergence of sample sums and extremes[J]. Bulletin of the Institute of Mathematics Academia Sinica. 1988.16:177-201.

[5] T C HU, R L TAYLOR. On the strong law for arrays and for the bootstrap mean and variance[J]. International Journal of Mathematics and Mathematical Science, 1997,20(2): 375-382.

[6] M H ZHU. Strong laws of large numbers for arrays of rowwise mixing random variables[J]. Discrete Dynamics in Nature and Society,2007(74296):6.

[7] Y F WU, D J ZHU. Convergence properties of partial sums for arrays of rowwise negatively orthant dependent random variables[J]. Journal of the Korean Statistical Society, 2000,39(2):189-197.

[8] S UTEV, M PELIGRAD. Maximal inequalities and an invariance principle for a class of weakly dependent random variables[J]. Journal of Theoretical Probability, 2003,16(1):101-115.endprint

主站蜘蛛池模板: 国产一区二区精品福利| 四虎永久免费地址| 综合亚洲色图| 久久久精品国产SM调教网站| 激情视频综合网| 亚洲手机在线| 免费女人18毛片a级毛片视频| 伊人色在线视频| 国产综合无码一区二区色蜜蜜| 一区二区三区精品视频在线观看| 国产偷国产偷在线高清| 亚洲伦理一区二区| 黄色三级网站免费| 成人亚洲视频| 久久精品一品道久久精品| 精品国产美女福到在线不卡f| 中文字幕第4页| 国产爽妇精品| 2019年国产精品自拍不卡| 欧美视频在线不卡| 国产亚洲视频在线观看| 久久国产精品电影| 在线日韩日本国产亚洲| 性喷潮久久久久久久久 | 国产亚洲高清在线精品99| 国产精品视频第一专区| 久久semm亚洲国产| 国产熟睡乱子伦视频网站| 五月婷婷伊人网| 91免费国产高清观看| 国产H片无码不卡在线视频| 一级黄色片网| 亚洲区第一页| 一边摸一边做爽的视频17国产| 国产精品免费p区| 日韩毛片在线播放| 综合网天天| 国产精品网拍在线| 国产精品久久久久无码网站| hezyo加勒比一区二区三区| 欧美综合中文字幕久久| 亚洲视频免费在线看| 国产18在线| 91成人在线观看视频| 国产成人精品综合| 免费观看精品视频999| 黄色在线网| 91av成人日本不卡三区| 99久久精品免费看国产免费软件| 韩日午夜在线资源一区二区| 国产免费高清无需播放器| 天天躁夜夜躁狠狠躁图片| 国产女同自拍视频| 欧美不卡视频在线观看| 欧美一道本| 在线观看热码亚洲av每日更新| www中文字幕在线观看| 亚洲欧美色中文字幕| 国产在线自在拍91精品黑人| 456亚洲人成高清在线| 精品夜恋影院亚洲欧洲| 国产成人久视频免费| 福利在线不卡| 国产农村妇女精品一二区| 在线观看国产黄色| 日韩成人在线网站| 99一级毛片| 亚洲欧美日韩成人高清在线一区| 亚洲男人天堂网址| 国产一区二区丝袜高跟鞋| 人禽伦免费交视频网页播放| 永久天堂网Av| 一区二区理伦视频| 人妻无码中文字幕第一区| 亚洲国产精品国自产拍A| 国产精品冒白浆免费视频| 亚洲成人网在线观看| 亚洲三级a| 影音先锋亚洲无码| 日韩高清中文字幕| 亚洲成aⅴ人片在线影院八| 亚洲人成电影在线播放|