999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

On the Complete Moment Convergence for Arrays

2014-10-27 18:39:55鄧總綱
經濟數學 2014年3期

鄧總綱

Abstract Let Xni;i≥1,n≥1 be an array of rowwise  mixing random variables. The authors discuss the complete moment convergence for  mixing random variables without assumptions of identical distribution and stochastic domination. The results obtained generalize and improve the corresponding theorems of Hu and Taylor (1997), Zhu (2006), Wu and Zhu (2010).

Key words arrays of rowwise mixing random variables;complete moment convergence; complete convergence

中圖分類號 AMS(2010) 60F15 文獻標識碼 A



1 Introduction

The concept of complete convergence was introduced by Hsu and Robbins[1] as follows: A sequence Xn;n≥1 of random variables is called to converge completely to the constant λ if

∑

SymboleB@ n=1PXn-λ>ε<

SymboleB@  for ε>0. (1)

In view of the BorelCantelli lemma, this implies that Xn→λ almost surely. Therefore the complete convergence is a very important tool in establishing almost sure convergence of summation of random variables. Hsu and Robbins[1] proved that the sequence of arithmetic means of independent and identically distributed (i.i.d.) random variables converges completely to the expected value if the variance of the summands is finite. Erd¨os[2] proved the converse.

The result of HsuRobbinsErd¨os is a fundamental theorem in probability theory and has been generalized and extended in several directions by many authors. One of the most important generalizations is Baum and Katz[3] for the strong law of large numbers as follows: Let p≥1α and 12<α≤1. Let Xn;n≥1 be a sequence of i.i.d. random variables with EXn=0. Then the following statements are equivalent:

The desired results (13) and (14) follow from the above statement. This completes the proof of Corollary 1.

On the complete moment convergence for arrays of rowwise mixing random variables in the evaluation of risk estimation、advantage inspection (see Marciniak and Wesolowski (1999) and Fujioka (2011)), reliability (see Gupta and Akman (1998)), life test (see Mendenhall and Lehman (1960)), insurance, financial mathematics (see Ramsay (1993)), complex system (see Jurlewicz and Weron (2002)) and from financial and predict the actual problem and so on all have quite a wide range of applications.

References

[1] P L HSU, H ROBBINS. Complete convergence and the strong law of large numbers[J]. Proceedings of the National Academy of Sciences of the United States of America, 1947,33:25-31.endprint

[2] P ERDOS. Remark on my paper “on a theorem of Hsu and Robbins”[J]. Annals of Mathematical Statistics, 1950,20:286-291.

[3] L E BAUM, M KATZ. Convergence rates in the law of large numbers[J]. Transactions of American Mathematical Society, 1965,120:108-123.

[4] Y S CHOW . On the rate of moment convergence of sample sums and extremes[J]. Bulletin of the Institute of Mathematics Academia Sinica. 1988.16:177-201.

[5] T C HU, R L TAYLOR. On the strong law for arrays and for the bootstrap mean and variance[J]. International Journal of Mathematics and Mathematical Science, 1997,20(2): 375-382.

[6] M H ZHU. Strong laws of large numbers for arrays of rowwise mixing random variables[J]. Discrete Dynamics in Nature and Society,2007(74296):6.

[7] Y F WU, D J ZHU. Convergence properties of partial sums for arrays of rowwise negatively orthant dependent random variables[J]. Journal of the Korean Statistical Society, 2000,39(2):189-197.

[8] S UTEV, M PELIGRAD. Maximal inequalities and an invariance principle for a class of weakly dependent random variables[J]. Journal of Theoretical Probability, 2003,16(1):101-115.endprint

[2] P ERDOS. Remark on my paper “on a theorem of Hsu and Robbins”[J]. Annals of Mathematical Statistics, 1950,20:286-291.

[3] L E BAUM, M KATZ. Convergence rates in the law of large numbers[J]. Transactions of American Mathematical Society, 1965,120:108-123.

[4] Y S CHOW . On the rate of moment convergence of sample sums and extremes[J]. Bulletin of the Institute of Mathematics Academia Sinica. 1988.16:177-201.

[5] T C HU, R L TAYLOR. On the strong law for arrays and for the bootstrap mean and variance[J]. International Journal of Mathematics and Mathematical Science, 1997,20(2): 375-382.

[6] M H ZHU. Strong laws of large numbers for arrays of rowwise mixing random variables[J]. Discrete Dynamics in Nature and Society,2007(74296):6.

[7] Y F WU, D J ZHU. Convergence properties of partial sums for arrays of rowwise negatively orthant dependent random variables[J]. Journal of the Korean Statistical Society, 2000,39(2):189-197.

[8] S UTEV, M PELIGRAD. Maximal inequalities and an invariance principle for a class of weakly dependent random variables[J]. Journal of Theoretical Probability, 2003,16(1):101-115.endprint

[2] P ERDOS. Remark on my paper “on a theorem of Hsu and Robbins”[J]. Annals of Mathematical Statistics, 1950,20:286-291.

[3] L E BAUM, M KATZ. Convergence rates in the law of large numbers[J]. Transactions of American Mathematical Society, 1965,120:108-123.

[4] Y S CHOW . On the rate of moment convergence of sample sums and extremes[J]. Bulletin of the Institute of Mathematics Academia Sinica. 1988.16:177-201.

[5] T C HU, R L TAYLOR. On the strong law for arrays and for the bootstrap mean and variance[J]. International Journal of Mathematics and Mathematical Science, 1997,20(2): 375-382.

[6] M H ZHU. Strong laws of large numbers for arrays of rowwise mixing random variables[J]. Discrete Dynamics in Nature and Society,2007(74296):6.

[7] Y F WU, D J ZHU. Convergence properties of partial sums for arrays of rowwise negatively orthant dependent random variables[J]. Journal of the Korean Statistical Society, 2000,39(2):189-197.

[8] S UTEV, M PELIGRAD. Maximal inequalities and an invariance principle for a class of weakly dependent random variables[J]. Journal of Theoretical Probability, 2003,16(1):101-115.endprint

主站蜘蛛池模板: 激情六月丁香婷婷| 久久国产精品国产自线拍| 国产无码高清视频不卡| 国产香蕉国产精品偷在线观看| 国产人人乐人人爱| 日韩无码视频专区| 久久黄色视频影| 久久黄色影院| 四虎成人在线视频| 免费久久一级欧美特大黄| 99精品免费在线| 精品国产成人av免费| 日本91视频| 91丨九色丨首页在线播放| 青青青视频蜜桃一区二区| 高h视频在线| 日韩国产高清无码| 欧美精品1区| 国产亚洲欧美在线人成aaaa| 国产精品成| 国产福利一区二区在线观看| 欧美性猛交一区二区三区| 国产超薄肉色丝袜网站| 无码中文AⅤ在线观看| 在线网站18禁| 国产99视频精品免费观看9e| 91精品啪在线观看国产91九色| 97免费在线观看视频| A级毛片无码久久精品免费| 丰满人妻中出白浆| 免费中文字幕在在线不卡| 亚洲中文在线看视频一区| 日韩精品一区二区三区大桥未久 | 久夜色精品国产噜噜| 亚洲va在线∨a天堂va欧美va| 人妻精品久久无码区| 亚洲精品视频免费| 91精品国产91欠久久久久| 国产精品无码影视久久久久久久 | 国产日韩久久久久无码精品| 黄色三级毛片网站| 成人蜜桃网| 青青青国产视频| 亚洲人网站| 亚洲热线99精品视频| 久久综合亚洲鲁鲁九月天| 欧美另类视频一区二区三区| 爱色欧美亚洲综合图区| 亚洲精品老司机| 极品国产在线| 黄色免费在线网址| 狂欢视频在线观看不卡| 日韩欧美国产成人| 777午夜精品电影免费看| 人人看人人鲁狠狠高清| 亚洲精品欧美日本中文字幕| 国产麻豆福利av在线播放| 亚洲AV色香蕉一区二区| 一级毛片免费的| 亚洲精品无码人妻无码| 狠狠色成人综合首页| 综合五月天网| 亚洲精品国产综合99久久夜夜嗨| 乱人伦视频中文字幕在线| av大片在线无码免费| 日韩av在线直播| 日韩中文无码av超清| 日韩欧美国产精品| 国语少妇高潮| 免费国产高清精品一区在线| 亚洲精品午夜天堂网页| 国产va欧美va在线观看| 国产91九色在线播放| 国产欧美性爱网| 亚洲欧美极品| 99er这里只有精品| 91探花在线观看国产最新| 欧美成人h精品网站| 成人亚洲视频| 看你懂的巨臀中文字幕一区二区| 黄色a一级视频| 日韩福利在线观看|