郭偉成+李作揚+王斌+周文君+張凱+常安妮
摘要:用柴油為唯一碳源的培養基選擇分離海帶表面具有降解柴油性能的細菌;對分離菌株進行了形態學、生理生化特性以及16SrDNA序列分析并測定其生長特性;測定了接菌不同濃度(7×107 cfu/mL、7×108 cfu/mL、7×109 cfu/mL)分離菌對柴油的降解率;另外,測定了加入不同濃度葡萄糖(0.5 g/L、1 g/L、2 g/L、4 g/L、6 g/L、8 g/L、10 g/L)作用7 d后分離菌對柴油的降解率。結果顯示:從海帶表面分離到2株降油細菌,編號為:HD-4和HD-6。HD-4菌株菌落形態圓形、直徑1.5 mm、黃色、不透明、邊緣整齊,HD-6菌株菌落圓形,直徑1.0 mm,淺黃色、透明、邊緣整齊。兩株菌均為革蘭氏陰性短桿菌。生理生化特征和16SrDNA序列分析確定HD-4菌株為假交替單胞菌(Pseudoalteromonas sp.),其16SrDNA同源性為99%;HD-6菌株為交替單胞菌(Alteromonas_sp.),其16SrDNA同源性為98%。2株菌最適生長溫度均為15 ℃。HD-4 和HD-6最適生長pH分別為9和8。適宜NaCl濃度分別為 2%和4%;在25 ℃振蕩培養(150 r/min)7 d,接菌量為7×107 cfu/mL、7×108 cfu/mL、7×109 cfu/mL 時,HD-4對柴油的初始降解率分別為80%,22.1%和27.6%;HD-6初始降解率分別為23.7%、38.8%和432%。加入葡萄糖后2株菌的降油率均有所增高,加入4 g/L葡萄糖時達最高值,3個接種濃度下HD-4菌株分別為85.4%、82.3%和80.4%,HD-6菌株分別為86.8%、93.7%和89.3%。當接菌量為7×107 cfu/mL,HD-4在葡萄糖含量為4 g/L 時作用7 d,降油率可達到最大值86.72%,HD-6菌株在葡萄糖濃度6 g/L達到最大值67.64%。葡萄糖濃度超過4 g/L和 6 g/L時HD-4和HD-6菌株的降油性能有所下降。
關鍵詞:石油降解菌;海帶;細菌鑒定;降油性
近年來,經濟的高速發展使得對能源需求日益增加,而以化石能源為主的能源結構帶來了海洋石油開采和海上石油運輸行業的大規模發展,而在石油開采、運輸過程中導致的海洋石油類污染隨之成為世界性的問題。根據國際海事組織的統計,全球每年流入海洋的石油數以千萬噸計[1],特別是在一些海灣,由于其獨特的半封閉水域特征,溢油事故一旦發生就將會導致可怕的生態危機[2]。據聯合國有關組織統計,每年由于海上油井井噴事故和油輪事故造成的溢油高達220萬t[3]。如何治理和修復被石油污染的海洋環境及被其破壞的生態系統已經成為當下研究的熱點。微生物修復是目前研究最多、應用也最為廣泛的一種生物修復方法。國內外眾多研究者對清除石油污染微生物的篩選鑒定、生長特性、菌株選育、降解原理、降解性能、影響因素等方面進行了大量研究[4-8]。目前有報道從耐受石油污染的小型藻類如藍藻和大型藻類如江籬上篩選降解石油微生物進行研究。Radwan[9]等發現,大量的石油分解菌附著于多種大型海藻上, 這種藻菌共同作用對石油類污染物的降解有明顯效果。本研究通過分離海帶表面的附著微生物,并從中篩選出具有降油性能的菌株,為制備用于海洋石油污染修復的復合菌劑提供菌種,同時也為探索以海洋大型藻類為載體強化定植降油細菌用于海洋環境的石油污染修復奠定基礎。
1實驗材料與方法
1.1樣品來源和培養基
海帶樣品采自大連黑石礁潮間帶,菌株初篩選用2216E固體培養基,復篩選用柴油平板培養基,測量菌種柴油降解率選用基礎無機鹽培養基[4]。
柴油平板培養基:基礎無機鹽培養基 1000 mL、吐溫80 1 mL、瓊脂粉15 g、0號柴油10 mL (市售0號柴油,121 ℃高壓滅菌后待用),pH 72,121 ℃高壓滅菌20 min。
基礎無機鹽培養基:氯化銨 0.5 g、氯化鈉 20 g、磷酸氫二鉀 1 g、磷酸二氫鉀 0.5 g、硫酸鎂 0.5 g、氯化鉀 0.1 g、硫酸鐵 0.01 g、氯化鈣 0.002 g、純水 1 000 mL,pH 7.2,121 ℃高壓滅菌20 min。
1.2降油細菌的分離和純化
首先將刮取的海帶表皮組織樣品置于5 mL滅菌離心管中,加入2 mL無菌生理鹽水并用勻漿器勻漿,對勻漿進行梯度稀釋(10-1、10-2、10-3、10-4、10-5),各取稀釋度為0.1 mL分別涂布于2216E平板上,置于25 ℃恒溫培養箱培養24 h。根據菌落形態分別挑取單菌落于2216E平板進行純化,每株菌分別純化三代后將其保種于2216E斜面用于初篩降油菌株,同時接種2216E液體25 ℃培養24 h,加入50%(V/V)滅菌甘油置于-80 ℃保存。將分離純化的菌株分別吸取10 μl點種到柴油平板中,25 ℃恒溫培養箱培養48~72 h。待平板上長出較清晰菌苔,挑取生長狀況良好的菌株作為目標菌株進行后續實驗。
1.3菌落及菌體的形態學及生理生化鑒定
將純化后并在柴油平板上生長良好的目標菌株分別在2216E平板上進行平板劃線,置于25℃培養24 h后,觀察菌落形態并挑取單菌落進行革蘭氏染色鏡檢。按照《魚類及其他水生動物細菌實用鑒定指南》 [10]和《常見細菌鑒定手冊》[11]鑒定其生理生化特性。
1.416S rDNA 基因測序及序列的擴增
將待測菌株送至大連寶生物工程有限公司進行16SrDNA基因測序及擴增,將測序結果輸入 GenBank數據庫中,進行Blast(Basic local Alignment Search Tool)同源性比對。
1.5系統發育樹的構建
利用Mega5.05軟件,將所得16SrDNA序列,進行多序列比對同時計算序列間的系統進化距離,用鄰接法(Neighbor-Joining method)構建系統發育樹后,以自舉數為1 000,通過自引導法(Bootstrap)進行置信度的檢測。
1.6石油降解細菌的生長特性
1.6.1溫度將目標菌株用2216E液體培養基活化24 h后,接種到5 mL 2216E液體培養基中,以不同的溫度梯度( 5 ℃、10 ℃、15 ℃、20 ℃、25 ℃、30 ℃、35 ℃、40 ℃)培養24 h,每三個平行為一組。對照組為未接菌的培養基,以波長為600 nm,采用分光光度法測量實驗組的吸光值(OD600nm)。以培養溫度為橫坐標,吸光值為縱坐標作圖,得到不同溫度條件下石油降解菌的生長特性。
1.6.2pH將目標菌株用2216E液體培養基活化24 h后,接種到5 mL 2%NaCl牛肉膏蛋白胨液體培養基中,以不同的pH梯度(pH=5、6、7、8、9、10,NaCl濃度2%)25 ℃培養24 h,每三個平行為一組。對照組為未接菌的培養基,以波長為600 nm,采用分光光度法測量實驗組的吸光值(OD600nm)。以培養pH為橫坐標,吸光值為縱坐標作圖,得到不同pH條件下石油降解菌的生長特性。
1.6.3鹽度將目標菌株用2216E液體培養基活化24 h后,接種到5 mL牛肉膏蛋白胨液體培養基中,以不同鹽度(NaCl濃度分別為1%、2%、3%、4%、5%)25 ℃培養24 h,每組三個平行。每三個平行為一組。對照組為未接菌的培養基,以波長為600 nm,采用分光光度法測量實驗組的吸光值(OD600nm)。以培養NaCl濃度為橫坐標,吸光值為縱坐標作圖,得到不同NaCl濃度條件下石油降解菌的生長特性。
1.7細菌降油性能測定
配置 MMC液體培養基,高壓蒸汽滅菌鍋中121 ℃,0.1MPa滅菌20 min。將在2216E斜面培養24 h處于對數生長期的菌斜面用無菌生理鹽水洗脫,梯度稀釋并用血球計數板計數,選擇細菌數為7×107 cfu/mL、7×108 cfu/mL、7×109 cfu/mL的梯度。
接種:分別將0.1 mL無菌柴油和1 mL濃度為7×107 cfu/mL、7×108 cfu/mL、7×109 cfu/mL的菌懸液依次加入到 MMC培養基中,每種接菌量設置三組平行實驗,以不接種菌液的培養基作為對照組。將接種好的三角燒瓶置于25 ℃,150 r/min恒溫搖床培養7 d。
柴油降解率的測定:將搖好的錐形瓶水平平穩取出,分別加入適量無水硫酸鈉,蓋上棉塞,輕輕搖動使無水硫酸鈉盡量溶解。吸取20 mL石油醚(透光率>90%,沸程60~90 ℃)加入三角瓶中,放回搖床搖10 min后取出錐形瓶,用移液槍吸取500 μL上層石油醚,加入到25 mL的比色管中,用石油醚定容至25 mL,充分混勻。在221 nm波長處通過紫外分光光度計測定各組吸光值。根據以下公式計算出降解率。降解率(D) =(A0-Ai)/A0×100%,其中D為柴油降解率,A0為空白對照組柴油吸光值,Ai為實驗組剩余柴油吸光值。
1.8測定葡萄糖對石油降解菌降油率的影響
以葡萄糖終濃度為4 g/L的 MMC培養基,分別按3個濃度接種(7×107 cfu/mL、7×108 cfu/mL、7×109 cfu/mL)兩株實驗菌,每種接菌量設置三組平行實驗,不接種菌液的培養基作為對照組,將接種好的三角燒瓶置于25 ℃,150 r/min恒溫搖床培養7 d。同法測定柴油降解率,比較不同接種量對柴油降解率的影響。
1.9不同葡萄糖濃度對石油降解菌降油率的影響
配制不同葡萄糖濃度(0.5 g/L、1 g/L、2 g/L、4 g/L、6 g/L、8 g/L、10 g/L)的柴油培養基,分別接種兩株實驗菌(107 cfu/mL),25 ℃、150 r/min恒溫搖床分別培養7 d,測定柴油降解率。
2結果
2.1石油降解菌的初篩
經柴油平板初篩得到2株不同形態的細菌,分別編號為:HD-4、HD-6。兩株菌可在以柴油為唯一碳源的培養基上生長。在2216E平板上25 ℃ 24 h后,HD-4菌落形態特征為圓形、偏黃、不透明、邊緣整齊、=1.5 mm,有運動能力。HD-6菌落形態特征為圓形、微黃,邊緣整齊、無圓心、=1.0 mm、有運動能力,培養24 h時菌落透明,48 h后菌落變得不透明。兩株菌均為革蘭氏陰性桿菌,見圖1和圖2。
圖1HD-4菌株的鏡下和菌落形態
圖2HD-6菌株的鏡下和菌落形態
2.2HD-4 和HD-6菌株生理生化特征
HD-4是假單胞菌屬,革蘭氏染色陰性無芽孢桿菌,呈桿狀或略彎,菌體大小(0.5~1)×(1.5~4)μm。具端鞭毛,能運動,不發酵糖類。HD-6是交替單胞菌屬:直或彎的桿狀,(0.7~1.5) μm×(1.8~3.0) μm,不積累聚-β-羥基丁酸鹽顆粒(PHB)作為胞內貯存物,不形成微胞囊和芽孢,細胞染色革蘭氏陰性。大多數以單個無鞘和極生鞭毛運動,有帶鞘的鞭毛。化能異養菌,能呼吸而不發酵的代謝型。精氨酸雙水解酶陰性,所有的都耐鹽生長,具體生理生化特征見表1。
表1HD-4, HD-6生理生化特征
鑒定指標
HD-4
HD-6
運動性
+
+
脲酶
+
-
氧化酶
+
+
接觸酶
+
+
明膠水解
-
+
精氨酸雙水解
-
-
葡萄糖氧化
+
+
葡萄糖發酵
-
-
V-P試驗
-
-
吲哚試驗
+
-
甲基紅試驗
-
-
檸檬酸鹽試驗
-
-
硝酸鹽還原
-
-
O/129藥敏紙片敏感性
-
-
注:-反應陰性;+ 反應陽性;d 不確定
2.316S rDNA序列及系統發育樹
2.3.1基因序列同源性比對將純化后得到的HD-4、HD-6菌株的單菌落移送至大連寶生物公司進行16S rDNA片段的擴增,對擴增得到的16S rDNA序列進行測序,將HD-4、HD-6菌株的16S rDNA序列測序結果與國際互聯網NCBI上GenBank中數據進行BLAST比對,發現HD-4與Pseudoalteromonas sp. 同源性達到99%;HD-6菌株16SrDNA序列與Alteromonas sp.同源性98%。
2.3.2構建系統發育樹序列的比對結果,利用Mega5.05軟件進行多序列比對同時計算序列間的系統進化距離,構建的發育樹得出:HD-4與Pseudoalteromonas sp. CF4-10聚為一支;HD-6與Alteromonas sp. HB1聚為一支,如圖3。
圖3HD-4,HD-6系統發育樹
2.4細菌生長特性的測定
圖4-圖6表明,HD-4和HD-6菌株最適生長溫度分別為15 ℃和20 ℃,兩菌株在10~30 ℃范圍內能較好生長,說明兩菌株能適應較大的溫度范圍且具有一定的耐低溫能力。兩株菌最適生長NaCl濃度分別為2%和4%;最適生長pH分別為9和8;且兩菌株在NaCl濃度1%~5%、pH=5~9范圍內,生長情況良好,說明兩菌株生長能力較強,對于不同鹽度、不同pH有一定的耐受性。
圖4兩株菌的最適生長溫度
圖5兩株菌的最適生長NaCl濃度
圖6兩株菌的最適生長pH
2.5HD-4和HD-6菌株原始降解率的測定
HD-4和HD-6菌株初始柴油降解率實驗結果顯示:隨著接菌數量的增加,兩株菌的降解率均呈現上升趨勢,HD-4菌株接菌量為107 cfu/mL降解率只有8.0%;當接菌量達到108 cfu/mL和109 cfu/mL時降解率有所提升,分別達到221%和27.6%。HD-6菌株接菌量為107 cfu/mL降解率為23.7%,而接菌量為108 cfu/mL和109 cfu/mL時,其降解率分別達到了388%和43.2%,兩株菌對柴油的降解率都與菌濃度正相關,且兩株菌差異性計算結果均顯示當接菌量為107 cfu/mL時,柴油降解率與108 cfu/mL、109 cfu/mL降解率差異顯著(P<0.05),接菌量在108 cfu/mL 和109 cfu/mL時降解率差異不顯著(P>0.05),詳見圖7。
圖7HD-4和HD-6菌株初始柴油降解率
2.6加入葡萄糖對柴油降解率的影響
圖8添加葡萄糖對HD-4柴油降解率額影響
圖9添加葡萄糖對HD-6柴油降解率額影響
在以柴油為唯一碳源的 MMC培養基中加入終濃度為4 g/L的葡萄糖后,不同接菌量實驗組對柴油降解率都有大幅度提升,均達到80%以上,且接菌量為107cells/mL時HD-4菌株和HD-6菌株的柴油降解率分別可達到85.4%和86.8%,不同接菌量兩株菌對柴油的降解率差異不顯著(P>0.05)。而在終濃度為4 g/L的葡萄糖的條件下,相同接菌量兩菌株的柴油降解率會因葡萄糖的增加而顯著增大,差異極顯著(P<001),且在菌濃度為107cells/mL時即可達到很高的降解率。詳見圖8-圖9。
2.7不同濃度葡萄糖對菌株降油性能的影響
在接菌量為107 cfu/mL的條件下,添加不同濃度葡萄糖,HD-4和HD-6兩株菌對柴油的降解率隨著葡萄糖濃度的增加都呈現先增大后減小的趨勢,HD-4在葡萄糖濃度為1 g/L、2 g/L、4 g/L、6 g/L、8 g/L、10 g/L時能保持較高的降解率,且在葡萄糖濃度為4 g/L時達到最大值86.72%;而HD-6在葡萄糖濃度為4 g/L、6 g/L、8 g/L、10 g/L濃度時對柴油的降解率才達到比較高的水平,在葡萄糖濃度為6 g/L時達到最大值67.64%,見圖10。
圖10不同濃度葡萄糖對兩株菌降油性能影響
3討論
通過以柴油為唯一碳源的柴油平板培養基,初篩得到兩株能利用柴油生長的菌株,編號為HD-4、 HD-6,經鑒定分別屬于假交替單胞菌屬和交替單胞菌屬。兩株菌均可耐鹽生長,對柴油具有降解能力,其原始降解率與菌種接入量呈正相關。有關藻類附著微生物石油污染物的利用性研究目前有關報道較少,S.S. Radwan等2002年報道在阿拉伯灣海域的幾種大型藻類(滸苔Enteromorpha、馬尾藻Sargassum、石花菜Gelidium、江蘺Gracilaria等)表面附著多種可利用石油類物質的微生物,以放線菌(Actinomycetes)和不動桿菌(Acinetobacter)為主,其中約64%~98%可利用烷烴,約 38%~56%可利用芳香烴(菲)[12]。并且這些微生物是定植在藻類的表面,不易脫落,很可能與藻類屬于共生關系。本研究分離的兩株降油細菌是否為海帶附著微生物中的優勢種類,以及與海帶的生態關系還需進一步深入研究。
HD-4和HD-6兩株菌在添加葡萄糖后對柴油的降解率大大提高,在7 d內可達到80%以上,并且菌種的接入量對降解率影響不明顯。葡萄糖為微生物代謝的初級能源,添加少量的初級能源物質,促進微生物對某些特殊物質的代謝稱為“共代謝” [13],它具有縮短生物處理系統適應和繁殖期的優勢[14]。微生物共代謝是時下研究較多的領域并具有較大的應用空間,在很多污染地方,如廢污水治理、土壤修復等領域有著廣泛應用,且對一些難降解的有機污染物,生物降解有其特殊優勢[15-17]。有學者實驗結果表明,當葡萄糖作為外加碳源加入土壤后,可以提高原土壤中有機碳的礦化速率[18],推測其機理可能正是由這種微生物共生作用增強了微生物的活性,增強了微生物的數量并且提高了其酶活力[19-20]。但是在測定添加不同濃度葡萄糖后兩株菌的降油率實驗中HD-6菌株的降解率較之前出現了下降的情況,分析原因考慮是否為轉接過程中代謝能力受到一定影響。鑒于實驗菌株的降油機理還不太清楚,其降解酶類的表達情況、影響因素等還需進行深入的研究。另外,本研究采用的兩株菌在柴油利用過程中是否具有“共代謝”作用也是今后需要深入研究的問題,這對利用這兩株菌進行石油污染海域或其他環境的生物修復具有重要的意義。
參考文獻:
[1] 支振鋒.油輪泄漏與海洋生物災難[J].新安全,2004(6):60-64
[2] 陳鋒,陳偉琪,王萱.溢油事故造成的海灣生態系統服務損失的貨幣化評估[J].環境科學與管理.2009,34(11):1-5
[3] United Nations Environment Programme.Keeping Track of Our Changing Environment: From Rio to Rio+20 (1992-2012)[R].Nairobi:United Nations Environment Programme,2011:49
[4] 鄭金秀,張甲耀,趙晴,等.高效石油降解菌的選育及其降解特性研究[J].環境科學與技術,2006,29(3):1-2,40
[5] 吳業輝,邵宗澤.海洋烷烴降解菌Alcanivorax sp.A-11-3的分離鑒定及其降解酶基因研究[J].臺灣海峽,2008,27(4):427-434
[6] 譚田豐,邵宗澤.海洋石油烴降解菌群構建及其在降解過程中的動態分析[J].廈門大學學報(自然科學版),2006,45(增刊):427-434
[7] 賈燕,尹華,彭輝,等.石油降解菌株的篩選、初步鑒定及其特性[J].暨南大學學報(自然科學版),2007,28(3):296-301
[8] 徐馮楠,馮貴穎,馬雯,等.高效石油降解菌的篩選及其降解性能研究[J].生物技術通報,2010(7):221-226
[9] RadwanSS,Hasan R H,Alamah S S,et al.Bioremediation of oily sea water by bacteria immobilized in biofilmscoating macroalgae[J].International Biodeterioration & Biodegradation,2002,50(1):55-59
[10] Nicky B. Buller. Bacteria from Fish and Other Aquatic Animals: A Practical Identification Manual [M].
[11] 東秀珠, 蔡妙英,等. 常見細菌系統鑒定手冊[M].北京:科學出版社,2001
[12] RadwanSS, Al-Hasan R H,Khanafer M,Eliyas M,et al.Hydrocarbon accumulation by picocyanobacteria from the Arabian Gulf[J].Journal of Applied Microbiology,2001,191:533-540
[13] Jensen, H. L. Carbon nutrition of some microganisms decomposting halogen-substituted aliphatic acid. Acta. Agr. Scand., 1963, 13: 404-412
[14] ANGELA V, GUIDO D M, SIMON A R, et al. Enhanced bioremediation of methyl tert-butyl ether (MTBE) by microbial consortia obtained from conta minated aquifer material[J]. Chemosphere, 2009, 75:149–155
[15] YIN Z, TIANGANG L, XIAOWEI W, et al. Influence of growth medium on cometabolic degradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. strain PheB4 [J]. Applied Microbiology and Biotechnology, 2007, 75:175–186
[16] 鞏宗強, 李培軍, 王新,等. 芘在土壤中的共代謝降解研究[J]. 應用生態學報, 2001,12(3): 447–450
[17] 李萍, 劉俊新. 廢水中難降解性有機污染物的共代謝降解[J]. 環境污染治理技術與設備, 2002,11(3):43–46
[18] SHEN J, BARTHA R. The pri ming effect of substrate addition in soil–based biodegradation tests[J]. Applied and Environmental Microbiology, 1996, 62: 1428–1430.
[19] 陳春梅, 謝祖彬, 朱建國. 土壤有機碳激發效應研究進展[J].土壤(Soils), 2006, 38(4):359-36
[20] Bingemann C W, Varner J E, Martin W P. The effect of the addition of organic materials on the decomposition of an organic soil[J]. Soil Science Society of American Proceedings, 1953, 17:34–38
Isolation and Degradation Characteristic of Oil Degrading Bacteria from kelp
GUO Weicheng,LI Zuoyang,WANG Bin,ZHOU Wenjun,ZHANG Kai,CHANG Anni
(Key Laboratory of Marine Bio-resources Restoration ad Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian 116023, China)
Abstract:The experiment isolated strains from the surface of the kelp that grew in intertidal of dalian HeiShiJiao, And screening two strains named HD-4 and HD-6 which could grow in medium that diesel oil was the sole carbon source. Cellular morphological observations, biochemical reactions and molecular identifications of 16S rDNA were used to identify strain HD-4、HD-6,and the growth characteristics of HD-4、HD-6 were also studied.Deter mination the initial degradation rate of diesel with different inoculation quantity, meanwhile the oil-degrading efficiency was also studied when different concentrations of glucose was added .The result shows: HD-4 was yellow, opaque, edge neat, the diameter is 1.5 mm; HD-6 was light yellow, transparent, regular edge and its diameter is 1.0 mm, the above two strains of bacteria were gram-negative bacteria. The sequences of 16SrDNA indicate that HD-4 was related to Pseudoalteromonas sp. E407-2, and the homology was 99%;HD-6 was closely related to Alteromonas sp. HB1. , the homology was 98%.The growing characteristics of these two strains showed that the optimum growth temperature、pH and the adaptive of NaCl concentration for HD-4 was 15 ℃、pH 9 and 2%,while HD-6 was 15 ℃、pH 8 and 4% respectively.Ultraviolet spectrophotometermeasured HD-4 shows that the initial degradation rate of diesel oil were 8.0%, 22.1% and 27.6%,in the inoculation quantity of 7 x 107 cfu/mL, and 7 x 108 cfu/mL, 7 x 109 cfu/mL,cultured 7 days in constant temperature,the degradationrate of diesel oilincreased significantly after adding 4 g/L glucose,reach to 85.4%, 82.3% and 80.4%,respectively; In the same situation,the initial degradation rate of diesel oil of HD-6 were23.7%, 38.8% and 43.2%, after joining the 4 g/L glucose, reach to 86.8%, 93.7% and 89.3%, respectively. Meanwhlie, in the inoculation quantity of 7 x 107 cell/mL, adding different quantity of glucose for 0.5 g/L、1 g/L、2 g/L、4 g/L、6 g/L、8 g/L、10 g/L, cultured 3 days in constant temperature ,the degrading efficiency of strain HD-4 reach the best when adding glucose to a specific concentration of 4 g/L ,about 86.72%;and the most efficient concentration of HD-6 is 6 g/L ,reach to 67.64%. As more glucose was added,the degradations of these two bacterium were efficiency dropped.The experiments indicated that adding glucose in a appropriate level, both of them can obviously promote the degradation rate of diesel oil ,but as more glucose was added, the degradation efficiency dropped.In this paper, use bacterium isolated from kelp, provides a theoretical basis and experimental basis by using bacterium to remediate petroleum conta mination.
Key words:petroleum-degrading bacteria; kelp; degradation ;glucose.
[15] YIN Z, TIANGANG L, XIAOWEI W, et al. Influence of growth medium on cometabolic degradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. strain PheB4 [J]. Applied Microbiology and Biotechnology, 2007, 75:175–186
[16] 鞏宗強, 李培軍, 王新,等. 芘在土壤中的共代謝降解研究[J]. 應用生態學報, 2001,12(3): 447–450
[17] 李萍, 劉俊新. 廢水中難降解性有機污染物的共代謝降解[J]. 環境污染治理技術與設備, 2002,11(3):43–46
[18] SHEN J, BARTHA R. The pri ming effect of substrate addition in soil–based biodegradation tests[J]. Applied and Environmental Microbiology, 1996, 62: 1428–1430.
[19] 陳春梅, 謝祖彬, 朱建國. 土壤有機碳激發效應研究進展[J].土壤(Soils), 2006, 38(4):359-36
[20] Bingemann C W, Varner J E, Martin W P. The effect of the addition of organic materials on the decomposition of an organic soil[J]. Soil Science Society of American Proceedings, 1953, 17:34–38
Isolation and Degradation Characteristic of Oil Degrading Bacteria from kelp
GUO Weicheng,LI Zuoyang,WANG Bin,ZHOU Wenjun,ZHANG Kai,CHANG Anni
(Key Laboratory of Marine Bio-resources Restoration ad Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian 116023, China)
Abstract:The experiment isolated strains from the surface of the kelp that grew in intertidal of dalian HeiShiJiao, And screening two strains named HD-4 and HD-6 which could grow in medium that diesel oil was the sole carbon source. Cellular morphological observations, biochemical reactions and molecular identifications of 16S rDNA were used to identify strain HD-4、HD-6,and the growth characteristics of HD-4、HD-6 were also studied.Deter mination the initial degradation rate of diesel with different inoculation quantity, meanwhile the oil-degrading efficiency was also studied when different concentrations of glucose was added .The result shows: HD-4 was yellow, opaque, edge neat, the diameter is 1.5 mm; HD-6 was light yellow, transparent, regular edge and its diameter is 1.0 mm, the above two strains of bacteria were gram-negative bacteria. The sequences of 16SrDNA indicate that HD-4 was related to Pseudoalteromonas sp. E407-2, and the homology was 99%;HD-6 was closely related to Alteromonas sp. HB1. , the homology was 98%.The growing characteristics of these two strains showed that the optimum growth temperature、pH and the adaptive of NaCl concentration for HD-4 was 15 ℃、pH 9 and 2%,while HD-6 was 15 ℃、pH 8 and 4% respectively.Ultraviolet spectrophotometermeasured HD-4 shows that the initial degradation rate of diesel oil were 8.0%, 22.1% and 27.6%,in the inoculation quantity of 7 x 107 cfu/mL, and 7 x 108 cfu/mL, 7 x 109 cfu/mL,cultured 7 days in constant temperature,the degradationrate of diesel oilincreased significantly after adding 4 g/L glucose,reach to 85.4%, 82.3% and 80.4%,respectively; In the same situation,the initial degradation rate of diesel oil of HD-6 were23.7%, 38.8% and 43.2%, after joining the 4 g/L glucose, reach to 86.8%, 93.7% and 89.3%, respectively. Meanwhlie, in the inoculation quantity of 7 x 107 cell/mL, adding different quantity of glucose for 0.5 g/L、1 g/L、2 g/L、4 g/L、6 g/L、8 g/L、10 g/L, cultured 3 days in constant temperature ,the degrading efficiency of strain HD-4 reach the best when adding glucose to a specific concentration of 4 g/L ,about 86.72%;and the most efficient concentration of HD-6 is 6 g/L ,reach to 67.64%. As more glucose was added,the degradations of these two bacterium were efficiency dropped.The experiments indicated that adding glucose in a appropriate level, both of them can obviously promote the degradation rate of diesel oil ,but as more glucose was added, the degradation efficiency dropped.In this paper, use bacterium isolated from kelp, provides a theoretical basis and experimental basis by using bacterium to remediate petroleum conta mination.
Key words:petroleum-degrading bacteria; kelp; degradation ;glucose.
[15] YIN Z, TIANGANG L, XIAOWEI W, et al. Influence of growth medium on cometabolic degradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. strain PheB4 [J]. Applied Microbiology and Biotechnology, 2007, 75:175–186
[16] 鞏宗強, 李培軍, 王新,等. 芘在土壤中的共代謝降解研究[J]. 應用生態學報, 2001,12(3): 447–450
[17] 李萍, 劉俊新. 廢水中難降解性有機污染物的共代謝降解[J]. 環境污染治理技術與設備, 2002,11(3):43–46
[18] SHEN J, BARTHA R. The pri ming effect of substrate addition in soil–based biodegradation tests[J]. Applied and Environmental Microbiology, 1996, 62: 1428–1430.
[19] 陳春梅, 謝祖彬, 朱建國. 土壤有機碳激發效應研究進展[J].土壤(Soils), 2006, 38(4):359-36
[20] Bingemann C W, Varner J E, Martin W P. The effect of the addition of organic materials on the decomposition of an organic soil[J]. Soil Science Society of American Proceedings, 1953, 17:34–38
Isolation and Degradation Characteristic of Oil Degrading Bacteria from kelp
GUO Weicheng,LI Zuoyang,WANG Bin,ZHOU Wenjun,ZHANG Kai,CHANG Anni
(Key Laboratory of Marine Bio-resources Restoration ad Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian 116023, China)
Abstract:The experiment isolated strains from the surface of the kelp that grew in intertidal of dalian HeiShiJiao, And screening two strains named HD-4 and HD-6 which could grow in medium that diesel oil was the sole carbon source. Cellular morphological observations, biochemical reactions and molecular identifications of 16S rDNA were used to identify strain HD-4、HD-6,and the growth characteristics of HD-4、HD-6 were also studied.Deter mination the initial degradation rate of diesel with different inoculation quantity, meanwhile the oil-degrading efficiency was also studied when different concentrations of glucose was added .The result shows: HD-4 was yellow, opaque, edge neat, the diameter is 1.5 mm; HD-6 was light yellow, transparent, regular edge and its diameter is 1.0 mm, the above two strains of bacteria were gram-negative bacteria. The sequences of 16SrDNA indicate that HD-4 was related to Pseudoalteromonas sp. E407-2, and the homology was 99%;HD-6 was closely related to Alteromonas sp. HB1. , the homology was 98%.The growing characteristics of these two strains showed that the optimum growth temperature、pH and the adaptive of NaCl concentration for HD-4 was 15 ℃、pH 9 and 2%,while HD-6 was 15 ℃、pH 8 and 4% respectively.Ultraviolet spectrophotometermeasured HD-4 shows that the initial degradation rate of diesel oil were 8.0%, 22.1% and 27.6%,in the inoculation quantity of 7 x 107 cfu/mL, and 7 x 108 cfu/mL, 7 x 109 cfu/mL,cultured 7 days in constant temperature,the degradationrate of diesel oilincreased significantly after adding 4 g/L glucose,reach to 85.4%, 82.3% and 80.4%,respectively; In the same situation,the initial degradation rate of diesel oil of HD-6 were23.7%, 38.8% and 43.2%, after joining the 4 g/L glucose, reach to 86.8%, 93.7% and 89.3%, respectively. Meanwhlie, in the inoculation quantity of 7 x 107 cell/mL, adding different quantity of glucose for 0.5 g/L、1 g/L、2 g/L、4 g/L、6 g/L、8 g/L、10 g/L, cultured 3 days in constant temperature ,the degrading efficiency of strain HD-4 reach the best when adding glucose to a specific concentration of 4 g/L ,about 86.72%;and the most efficient concentration of HD-6 is 6 g/L ,reach to 67.64%. As more glucose was added,the degradations of these two bacterium were efficiency dropped.The experiments indicated that adding glucose in a appropriate level, both of them can obviously promote the degradation rate of diesel oil ,but as more glucose was added, the degradation efficiency dropped.In this paper, use bacterium isolated from kelp, provides a theoretical basis and experimental basis by using bacterium to remediate petroleum conta mination.
Key words:petroleum-degrading bacteria; kelp; degradation ;glucose.