999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

解析幾何中的數(shù)學(xué)思想

2014-07-18 23:12:25李文生
新課程·中學(xué) 2014年3期
關(guān)鍵詞:解題思想數(shù)學(xué)

李文生

解析幾何的本質(zhì)是用代數(shù)的方法研究幾何問題,解幾知識中,蘊(yùn)含著深刻的數(shù)學(xué)思想,對解幾本質(zhì)的考查往往通過對其思想應(yīng)用的考查得以體現(xiàn)。首先是由解幾本質(zhì)特征所決定的函數(shù)與方程思想,數(shù)形結(jié)合思想,其次是研究幾何問題常用到的化歸與轉(zhuǎn)化的思想方法,分類與整合的思想方法,一般與特殊的思想方法等。

一、數(shù)形結(jié)合思想

解析幾何的基本思想就是數(shù)形結(jié)合,因?yàn)閿?shù)與形是數(shù)學(xué)中最古老、最基本的研究對象,在解題中要善于將數(shù)形結(jié)合的數(shù)學(xué)思想運(yùn)用于對圓錐曲線和平面幾何性質(zhì)以及相互關(guān)系的研究,即通過“以形輔數(shù)”“以數(shù)解形”“數(shù)形結(jié)合”將抽象的數(shù)學(xué)問題與直觀的幾何圖形相結(jié)合,從而達(dá)到優(yōu)化解題的途徑。

二、函數(shù)與方程的思想

函數(shù)思想與方程思想之間,相輔相成。函數(shù)問題與方程問題可以相互轉(zhuǎn)化解決、函數(shù)與方程之間的辯證關(guān)系形成了函數(shù)與方程思想,函數(shù)與方程思想就是用動靜結(jié)合,相互轉(zhuǎn)化的觀點(diǎn)看待問題,從而解決問題的一種思維方式,是很重要的數(shù)學(xué)思想。在解析幾何中應(yīng)用函數(shù)思想就是用運(yùn)動、變化、聯(lián)系的觀點(diǎn),分析問題中的數(shù)量關(guān)系、構(gòu)造函數(shù)來解決問題。

評析:本題需通過方程的聯(lián)立,函數(shù)的構(gòu)造以及方程的解與函數(shù)零點(diǎn)的關(guān)系轉(zhuǎn)化問題。

解析幾何是一門以代數(shù)方法研究幾何問題的學(xué)科,主要涉及函數(shù)與方程等知識,因此是考查函數(shù)與方程思想的良好素材。所以,考生若能真正領(lǐng)會函數(shù)與方程思想,就能克服對解析幾何解答題的畏難情緒。

而解析幾何的題目都以方程形式給定直線和圓錐曲線,因此,把直線與圓錐曲線的相交問題利用韋達(dá)定理進(jìn)行整體處理,以及直線方程思想的應(yīng)用,都可以大大簡化解題過程。

三、化歸與轉(zhuǎn)化思想

數(shù)學(xué)對象的內(nèi)部或者不同的數(shù)學(xué)對象之間,往往會以某種形式相互聯(lián)系,在一定的條件下能夠相互轉(zhuǎn)化,針對面臨的數(shù)學(xué)問題,實(shí)施或轉(zhuǎn)化問題的條件,或轉(zhuǎn)化問題的結(jié)論或轉(zhuǎn)化問題的內(nèi)在結(jié)構(gòu),或轉(zhuǎn)化問題的外部表現(xiàn)形式等行動策略去解決有關(guān)的數(shù)學(xué)問題,能促進(jìn)問題的解決,可以說,數(shù)學(xué)解題的過程就是不斷化歸與轉(zhuǎn)化的過程。

在解析幾何中主要是研究直線、圓、圓錐曲線這些圖形的位置關(guān)系及其幾何性質(zhì)。對于一時難以解決的問題,可運(yùn)用轉(zhuǎn)化與化歸思想經(jīng)過觀察、分析、類比、聯(lián)想等思維過程,運(yùn)用恰當(dāng)?shù)臄?shù)學(xué)方法進(jìn)行變換,將原問題化歸為一類已經(jīng)能解決或者比較容易解決的問題。

變與不變是一對辨證的矛盾,它們相互依存且可以在一定條件下相互轉(zhuǎn)化,要注意尋找數(shù)和形的不變量。如:方程的解、點(diǎn)的坐標(biāo)、角的大小、線段的長度、定點(diǎn)、定值等,在解析幾何中,若有意識尋求蘊(yùn)含其中的不變量或不變的性質(zhì)(如公其的對稱軸、公共的點(diǎn)、不變的斜率、不變的截距、不變的離心率等),便能認(rèn)清問題的本質(zhì),通過恒等轉(zhuǎn)化、合理化歸、便能實(shí)現(xiàn)將復(fù)雜問題化歸為簡單的問題。

總之,在數(shù)學(xué)學(xué)習(xí)中,若不研究數(shù)學(xué)思想的應(yīng)用,所謂的解題方法就無基礎(chǔ),解題的過程只不過是簡單的機(jī)械活動,而數(shù)學(xué)思想猶如一盞為船只指明航向的明燈,只要能自覺應(yīng)用它指導(dǎo)解題,思路就能豁然開朗,解題自然就成為一種享受。

(作者單位 福建省連城縣第一中學(xué))endprint

解析幾何的本質(zhì)是用代數(shù)的方法研究幾何問題,解幾知識中,蘊(yùn)含著深刻的數(shù)學(xué)思想,對解幾本質(zhì)的考查往往通過對其思想應(yīng)用的考查得以體現(xiàn)。首先是由解幾本質(zhì)特征所決定的函數(shù)與方程思想,數(shù)形結(jié)合思想,其次是研究幾何問題常用到的化歸與轉(zhuǎn)化的思想方法,分類與整合的思想方法,一般與特殊的思想方法等。

一、數(shù)形結(jié)合思想

解析幾何的基本思想就是數(shù)形結(jié)合,因?yàn)閿?shù)與形是數(shù)學(xué)中最古老、最基本的研究對象,在解題中要善于將數(shù)形結(jié)合的數(shù)學(xué)思想運(yùn)用于對圓錐曲線和平面幾何性質(zhì)以及相互關(guān)系的研究,即通過“以形輔數(shù)”“以數(shù)解形”“數(shù)形結(jié)合”將抽象的數(shù)學(xué)問題與直觀的幾何圖形相結(jié)合,從而達(dá)到優(yōu)化解題的途徑。

二、函數(shù)與方程的思想

函數(shù)思想與方程思想之間,相輔相成。函數(shù)問題與方程問題可以相互轉(zhuǎn)化解決、函數(shù)與方程之間的辯證關(guān)系形成了函數(shù)與方程思想,函數(shù)與方程思想就是用動靜結(jié)合,相互轉(zhuǎn)化的觀點(diǎn)看待問題,從而解決問題的一種思維方式,是很重要的數(shù)學(xué)思想。在解析幾何中應(yīng)用函數(shù)思想就是用運(yùn)動、變化、聯(lián)系的觀點(diǎn),分析問題中的數(shù)量關(guān)系、構(gòu)造函數(shù)來解決問題。

評析:本題需通過方程的聯(lián)立,函數(shù)的構(gòu)造以及方程的解與函數(shù)零點(diǎn)的關(guān)系轉(zhuǎn)化問題。

解析幾何是一門以代數(shù)方法研究幾何問題的學(xué)科,主要涉及函數(shù)與方程等知識,因此是考查函數(shù)與方程思想的良好素材。所以,考生若能真正領(lǐng)會函數(shù)與方程思想,就能克服對解析幾何解答題的畏難情緒。

而解析幾何的題目都以方程形式給定直線和圓錐曲線,因此,把直線與圓錐曲線的相交問題利用韋達(dá)定理進(jìn)行整體處理,以及直線方程思想的應(yīng)用,都可以大大簡化解題過程。

三、化歸與轉(zhuǎn)化思想

數(shù)學(xué)對象的內(nèi)部或者不同的數(shù)學(xué)對象之間,往往會以某種形式相互聯(lián)系,在一定的條件下能夠相互轉(zhuǎn)化,針對面臨的數(shù)學(xué)問題,實(shí)施或轉(zhuǎn)化問題的條件,或轉(zhuǎn)化問題的結(jié)論或轉(zhuǎn)化問題的內(nèi)在結(jié)構(gòu),或轉(zhuǎn)化問題的外部表現(xiàn)形式等行動策略去解決有關(guān)的數(shù)學(xué)問題,能促進(jìn)問題的解決,可以說,數(shù)學(xué)解題的過程就是不斷化歸與轉(zhuǎn)化的過程。

在解析幾何中主要是研究直線、圓、圓錐曲線這些圖形的位置關(guān)系及其幾何性質(zhì)。對于一時難以解決的問題,可運(yùn)用轉(zhuǎn)化與化歸思想經(jīng)過觀察、分析、類比、聯(lián)想等思維過程,運(yùn)用恰當(dāng)?shù)臄?shù)學(xué)方法進(jìn)行變換,將原問題化歸為一類已經(jīng)能解決或者比較容易解決的問題。

變與不變是一對辨證的矛盾,它們相互依存且可以在一定條件下相互轉(zhuǎn)化,要注意尋找數(shù)和形的不變量。如:方程的解、點(diǎn)的坐標(biāo)、角的大小、線段的長度、定點(diǎn)、定值等,在解析幾何中,若有意識尋求蘊(yùn)含其中的不變量或不變的性質(zhì)(如公其的對稱軸、公共的點(diǎn)、不變的斜率、不變的截距、不變的離心率等),便能認(rèn)清問題的本質(zhì),通過恒等轉(zhuǎn)化、合理化歸、便能實(shí)現(xiàn)將復(fù)雜問題化歸為簡單的問題。

總之,在數(shù)學(xué)學(xué)習(xí)中,若不研究數(shù)學(xué)思想的應(yīng)用,所謂的解題方法就無基礎(chǔ),解題的過程只不過是簡單的機(jī)械活動,而數(shù)學(xué)思想猶如一盞為船只指明航向的明燈,只要能自覺應(yīng)用它指導(dǎo)解題,思路就能豁然開朗,解題自然就成為一種享受。

(作者單位 福建省連城縣第一中學(xué))endprint

解析幾何的本質(zhì)是用代數(shù)的方法研究幾何問題,解幾知識中,蘊(yùn)含著深刻的數(shù)學(xué)思想,對解幾本質(zhì)的考查往往通過對其思想應(yīng)用的考查得以體現(xiàn)。首先是由解幾本質(zhì)特征所決定的函數(shù)與方程思想,數(shù)形結(jié)合思想,其次是研究幾何問題常用到的化歸與轉(zhuǎn)化的思想方法,分類與整合的思想方法,一般與特殊的思想方法等。

一、數(shù)形結(jié)合思想

解析幾何的基本思想就是數(shù)形結(jié)合,因?yàn)閿?shù)與形是數(shù)學(xué)中最古老、最基本的研究對象,在解題中要善于將數(shù)形結(jié)合的數(shù)學(xué)思想運(yùn)用于對圓錐曲線和平面幾何性質(zhì)以及相互關(guān)系的研究,即通過“以形輔數(shù)”“以數(shù)解形”“數(shù)形結(jié)合”將抽象的數(shù)學(xué)問題與直觀的幾何圖形相結(jié)合,從而達(dá)到優(yōu)化解題的途徑。

二、函數(shù)與方程的思想

函數(shù)思想與方程思想之間,相輔相成。函數(shù)問題與方程問題可以相互轉(zhuǎn)化解決、函數(shù)與方程之間的辯證關(guān)系形成了函數(shù)與方程思想,函數(shù)與方程思想就是用動靜結(jié)合,相互轉(zhuǎn)化的觀點(diǎn)看待問題,從而解決問題的一種思維方式,是很重要的數(shù)學(xué)思想。在解析幾何中應(yīng)用函數(shù)思想就是用運(yùn)動、變化、聯(lián)系的觀點(diǎn),分析問題中的數(shù)量關(guān)系、構(gòu)造函數(shù)來解決問題。

評析:本題需通過方程的聯(lián)立,函數(shù)的構(gòu)造以及方程的解與函數(shù)零點(diǎn)的關(guān)系轉(zhuǎn)化問題。

解析幾何是一門以代數(shù)方法研究幾何問題的學(xué)科,主要涉及函數(shù)與方程等知識,因此是考查函數(shù)與方程思想的良好素材。所以,考生若能真正領(lǐng)會函數(shù)與方程思想,就能克服對解析幾何解答題的畏難情緒。

而解析幾何的題目都以方程形式給定直線和圓錐曲線,因此,把直線與圓錐曲線的相交問題利用韋達(dá)定理進(jìn)行整體處理,以及直線方程思想的應(yīng)用,都可以大大簡化解題過程。

三、化歸與轉(zhuǎn)化思想

數(shù)學(xué)對象的內(nèi)部或者不同的數(shù)學(xué)對象之間,往往會以某種形式相互聯(lián)系,在一定的條件下能夠相互轉(zhuǎn)化,針對面臨的數(shù)學(xué)問題,實(shí)施或轉(zhuǎn)化問題的條件,或轉(zhuǎn)化問題的結(jié)論或轉(zhuǎn)化問題的內(nèi)在結(jié)構(gòu),或轉(zhuǎn)化問題的外部表現(xiàn)形式等行動策略去解決有關(guān)的數(shù)學(xué)問題,能促進(jìn)問題的解決,可以說,數(shù)學(xué)解題的過程就是不斷化歸與轉(zhuǎn)化的過程。

在解析幾何中主要是研究直線、圓、圓錐曲線這些圖形的位置關(guān)系及其幾何性質(zhì)。對于一時難以解決的問題,可運(yùn)用轉(zhuǎn)化與化歸思想經(jīng)過觀察、分析、類比、聯(lián)想等思維過程,運(yùn)用恰當(dāng)?shù)臄?shù)學(xué)方法進(jìn)行變換,將原問題化歸為一類已經(jīng)能解決或者比較容易解決的問題。

變與不變是一對辨證的矛盾,它們相互依存且可以在一定條件下相互轉(zhuǎn)化,要注意尋找數(shù)和形的不變量。如:方程的解、點(diǎn)的坐標(biāo)、角的大小、線段的長度、定點(diǎn)、定值等,在解析幾何中,若有意識尋求蘊(yùn)含其中的不變量或不變的性質(zhì)(如公其的對稱軸、公共的點(diǎn)、不變的斜率、不變的截距、不變的離心率等),便能認(rèn)清問題的本質(zhì),通過恒等轉(zhuǎn)化、合理化歸、便能實(shí)現(xiàn)將復(fù)雜問題化歸為簡單的問題。

總之,在數(shù)學(xué)學(xué)習(xí)中,若不研究數(shù)學(xué)思想的應(yīng)用,所謂的解題方法就無基礎(chǔ),解題的過程只不過是簡單的機(jī)械活動,而數(shù)學(xué)思想猶如一盞為船只指明航向的明燈,只要能自覺應(yīng)用它指導(dǎo)解題,思路就能豁然開朗,解題自然就成為一種享受。

(作者單位 福建省連城縣第一中學(xué))endprint

猜你喜歡
解題思想數(shù)學(xué)
用“同樣多”解題
設(shè)而不求巧解題
思想之光照耀奮進(jìn)之路
華人時刊(2022年7期)2022-06-05 07:33:26
思想與“劍”
用“同樣多”解題
艱苦奮斗、勤儉節(jié)約的思想永遠(yuǎn)不能丟
“思想是什么”
我為什么怕數(shù)學(xué)
新民周刊(2016年15期)2016-04-19 18:12:04
數(shù)學(xué)到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
解題勿忘我
主站蜘蛛池模板: 国产精品男人的天堂| 亚洲一区黄色| 国产三级精品三级在线观看| 久久婷婷色综合老司机| 国产天天色| 欧美啪啪精品| 国产亚洲精品无码专| 国产高清不卡视频| 亚洲男人天堂网址| 欧美日韩在线观看一区二区三区| 国产精品第一区在线观看| 激情无码视频在线看| 欧美日韩在线亚洲国产人| 极品私人尤物在线精品首页 | 亚洲 欧美 偷自乱 图片| 97影院午夜在线观看视频| 精品天海翼一区二区| 欧美成人国产| 国产精品女同一区三区五区| 免费jjzz在在线播放国产| 日本午夜影院| 国产亚洲精久久久久久无码AV | 成年片色大黄全免费网站久久| 热99精品视频| 美女潮喷出白浆在线观看视频| 亚洲精品日产精品乱码不卡| AV色爱天堂网| 自拍欧美亚洲| 天堂av综合网| 日本免费高清一区| 国产大片喷水在线在线视频| 日本免费高清一区| 五月天综合网亚洲综合天堂网| 国产十八禁在线观看免费| 综合色婷婷| 欧美精品另类| 成人在线观看不卡| 亚洲另类色| 无码中文字幕乱码免费2| 99在线免费播放| 国产精品成人不卡在线观看| 欧美一级大片在线观看| 亚洲中文在线视频| 精品一区国产精品| 亚洲成aⅴ人片在线影院八| 欧美成a人片在线观看| 亚洲无线国产观看| 日韩欧美国产综合| 亚洲精品老司机| 怡春院欧美一区二区三区免费| 米奇精品一区二区三区| 91精品专区国产盗摄| 日本一区二区不卡视频| 午夜日b视频| 国产精品美女自慰喷水| 久久综合九色综合97网| 性欧美在线| 亚洲AV一二三区无码AV蜜桃| 欧亚日韩Av| 伊人天堂网| 99伊人精品| 亚洲美女AV免费一区| 永久在线精品免费视频观看| 久久久久青草线综合超碰| 国产成人毛片| 日韩av在线直播| 免费在线不卡视频| 午夜国产精品视频| 99激情网| 午夜精品影院| AV片亚洲国产男人的天堂| 亚洲资源站av无码网址| 97国产在线观看| 日韩中文字幕亚洲无线码| 一边摸一边做爽的视频17国产| 欧美精品伊人久久| 亚洲aaa视频| 在线va视频| 波多野结衣无码中文字幕在线观看一区二区 | 91成人在线免费观看| 亚洲性影院| 99久久国产综合精品2020|