999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一類推廣的Bernstein-Kantorovich算子的點態逼近

2014-07-18 12:07:49劉國芬
純粹數學與應用數學 2014年1期
關鍵詞:利用數學

劉國芬

(1.河北師范大學數學與信息科學學院,河北石家莊050024; 2.河北省計算數學與應用重點實驗室,河北石家莊050024)

一類推廣的Bernstein-Kantorovich算子的點態逼近

劉國芬1,2

(1.河北師范大學數學與信息科學學院,河北石家莊050024; 2.河北省計算數學與應用重點實驗室,河北石家莊050024)

討論Bernstein-Kantorovich算子的一種推廣形式的逼近性質,運用插項的方法證明了逼近正定理,并證明了逆定理,得到了逼近等價定理.完善了算子在逼近性質方面的結果.

Bernstein-Kantorovich型算子;光滑模;K-泛函;逼近正逆定理

1 引言

對于f∈C[0,1],Bn(f,x)表示Bernstein-Kantorovich算子,定義[1]

這里,

是B′ezier基算子,sn是一個自然數序列并且對于Sikkema算子[3]和B′ezier算子[4-7]許多學者都有一定的研究,對Bernstein-Sikkema-B′ezier算子的點態逼近性質進行了討論[8],證明了其逼近的等價定理.本文將對Bernstein-Kantorovich的Sikkema-B′ezier變形算子的逼近性進行討論,給出并證明該算子逼近的正逆定理和等價定理,其中主要結論敘述如下.

定理1設則下面兩個陳述是等價的:

文中用到光滑模和K-泛函的等價性,它們的定義分別為:

這里

文中C表示與n和x都無關的常數,不同位置的數值可能是不一樣的.

2 引理

為了證明定理1,需要幾個引理.為了利用插項的方法,首先給出Bernstein-Kantorovich-B′ezier算子的逼近度,定義為

引理2.1設

證明由與光滑模之間的等價關系,對于固定的n,x和λ,可以選擇適當的g=gn,x,λ,使得

注意到|Bn,α(f)|≤α∥f∥,

注意到0

可推出[1]:

利用(2.2)-(2.4)和(2.7)式,引理2.1得證.

引理2.2下面關于Sn,1(f,x)的矩的估計:

證明經過簡單的計算就可得到Sn,1(1,x)=1,

成立.于是(2.8)式得證.

引理2.3設

則有

進一步,當f∈Wλ時,

證明首先證明(2.9)式.

這里

利用1=Jn,0>Jn,1>···>Jn,n>0和

注意到pn,n+1(x)=0,pn,?1(x)=0,結合,有

當x∈En時,δn(x)~φ(x),

結合(2.11)和(2.12)式,證明了(2.9)式.下面證明(2.10)式.

由于Sn,α(1,x)=1,顯然f(x)S′n,α(1,x)=0.當f∈Wλ時,有

于是由(2.6)式,可得

注意到pn,?1(x)=0,當時,

這里

對于K1,有(當x=0時,K1=0),

另一方面,

對于x∈En,δn(x)~φ(x),

顯然對于x∈En(2.14)式的推導過程也是適用的,I1≤C.于是當x∈En時,有

由(2.15)和(2.16),(2.10)式成立.這樣引理2.3得證.

引理2.4當0時,不等式

證明對于(2.17),利用H¨older不等式只需證明:

3 定理的證明

這一部分將對定理1進行證明.對于(1.2)?(1.1)式,由引理2.1,

再由文獻[1]中的(3.1.5)得到,

于是(1.1)式成立.另一方面,利用引理2.3和引理2.4并借助文獻[9]中定理1關于“?”的方法就可以證明(1.1)?(1.2)式,這里不再敘述細節.

[1]Ditzian Z,Totik V.Moduli of Smoothness[M].New York:Springer-Verlag,1987.

[2]程麗.Bernstein-Kantorovich算子線性組合同時逼近的正逆定理[J].純粹數學與應用數學,2011,27(1):56-62.

[3]Cao J D.A Generalization of the Bernstein polynomials[J].J.Math.Anal.and Appl.,1997,209:140-146.

[4]Chang G Z.Generalized Bernstein-B′ezier polynomial[J].J.Comput.Math.,1983,1(4):322-327.

[5]Liu Z X.Approximation of continuous by the generalized Bernstein-B′ezier polynomials[J].Approx.Theory Appl.,1986,4(2):105-130.

[6]Zeng X M,Piriou A.On the rate of convergence of two Bernstein-B′ezier type operators for bounded variation functions[J].J.Approx.Theory,1998,95:369-387.

[7]Guo S S,Qi Q L,Liu G F.The central approximation theorem for Baskakov-B′ezier operators[J].J.Approx Theory,2007,147:112-124.

[8]劉國芬.Bernstein-Sikkema-B′ezier算子的點態逼近[J].數學的實踐與認識,2013,43(1):199-204.

[9]Guo S S,Liu L X,Qi Q L.Pointwise estimate for linear combinations of Bernstein-Kantorovich operators[J]. J.Math.Anal.Appl.,2002,265:135-147.

Pointwise approximation for a generalization of Bernstein-Kantorovich operators

Liu Guofen1,2

(1.College of Mathematics and Information Science,Hebei Normal University,Shijiazhuang050024,China; 2.Hebei Key Laboratory of Computational Mathematics and Applications,Shijiazhuang050024,China)

We study the properties of approximation for a generalization of Bernstein-Kantorovich operators and prove the direct approximation theorem by the means of inserting term and the inverse theorem,namely the equivalence theorem.The results of the properties of approximation for this kind of operators are perfected.

generalized Bernstein-Kantorovich operators,modulus of smoothness,K-functional, direct and inverse approximation theorem

O174.41

A

1008-5513(2014)01-0032-08

10.3969/j.issn.1008-5513.2014.01.006

2008-02-10.

國家自然科學基金(10801043).

劉國芬(1974-),博士,講師,研究方向:函數逼近論.

2010 MSC:41A25,41A26,41A36

猜你喜歡
利用數學
利用min{a,b}的積分表示解決一類絕對值不等式
中等數學(2022年2期)2022-06-05 07:10:50
利用倒推破難點
利用一半進行移多補少
我們愛數學
利用數的分解來思考
Roommate is necessary when far away from home
利用
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
數學也瘋狂
主站蜘蛛池模板: 国产精品手机视频| 国产一区二区三区夜色| 亚洲第一页在线观看| 国产SUV精品一区二区6| 久久福利网| 国产一二视频| 国产成人乱无码视频| 亚洲香蕉伊综合在人在线| 欧美伦理一区| 欧美日韩午夜| 久久人妻系列无码一区| a级毛片一区二区免费视频| 久久96热在精品国产高清| 国产成人无码播放| 91美女在线| 国产不卡在线看| 日韩精品毛片| 国产69精品久久久久孕妇大杂乱| 在线观看国产黄色| 伊人丁香五月天久久综合| 热九九精品| 漂亮人妻被中出中文字幕久久 | 狠狠做深爱婷婷久久一区| 欧美成a人片在线观看| a免费毛片在线播放| 中文字幕 日韩 欧美| 免费人成网站在线观看欧美| lhav亚洲精品| 国产成人无码Av在线播放无广告| 沈阳少妇高潮在线| av午夜福利一片免费看| 少妇露出福利视频| 亚洲精品在线观看91| 手机在线看片不卡中文字幕| 国产麻豆福利av在线播放| 亚洲天堂精品视频| 欧美亚洲一区二区三区导航| 女人18一级毛片免费观看| 911亚洲精品| 国产成人乱无码视频| 欧美精品xx| 国产一区二区三区夜色| 精品久久蜜桃| 精品国产一区二区三区在线观看 | 国产亚洲精| 91免费精品国偷自产在线在线| 四虎影视库国产精品一区| 亚洲欧美日韩天堂| 99视频全部免费| 国产女人18水真多毛片18精品| 久久成人国产精品免费软件| 2024av在线无码中文最新| 亚洲黄网在线| 高清乱码精品福利在线视频| 久久精品电影| 91热爆在线| 亚洲无码高清一区二区| 国产精品无码在线看| 欧洲一区二区三区无码| 青青青伊人色综合久久| 国产成人91精品| 91久久精品国产| 亚洲色中色| 日韩高清中文字幕| 欲色天天综合网| 怡春院欧美一区二区三区免费| 成人免费午夜视频| 国产一国产一有一级毛片视频| 精品国产91爱| 欧美日韩国产精品综合| 日韩精品一区二区三区中文无码| 喷潮白浆直流在线播放| www.youjizz.com久久| 亚洲日韩在线满18点击进入| 最新精品国偷自产在线| 国产特级毛片aaaaaaa高清| 国产永久免费视频m3u8| 精品在线免费播放| 午夜小视频在线| 亚洲中文无码h在线观看| 91亚洲精选| 国产成人综合在线观看|