999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

牙鲆變態期間核酸、總蛋白的變化及其與生長的關系

2014-07-16 08:33:53佟雪紅等
江蘇農業科學 2014年3期

佟雪紅等

摘要:研究牙鲆變態期間核酸、總蛋白及其比值的變化,并確定其與生長的關系。結果顯示,DNA濃度在22~32日齡保持相對穩定,在32~34日齡急劇升高,在36日齡達到最高。RNA濃度在24日齡升至峰值,在32日齡降至最低,之后呈先升高再下降的趨勢。總蛋白濃度在22~29日齡呈升高趨勢,之后先降低再上升。DNA、RNA含量及總蛋白含量在變態期間均保持先升高后降低再升高的趨勢,在32~36日齡快速增長。RNA/DNA比值在22~24日齡呈上升趨勢,然后下降直至32日齡,之后先上升后下降,并在36日齡達到最低值(2.27)。Protein/DNA比值在29日齡達到最高值(61.97),之后先下降后上升。RNA、DNA濃度及總蛋白濃度與體長和體重有明顯的線性關系。結果表明,牙鲆變態高峰期前的生長以細胞增大為主,變態后的生長以細胞增殖為主,RNA、DNA及其比值可以從微觀細胞水平上指示仔稚魚的生長。

關鍵詞:牙鲆;變態;核酸;RNA/DNA;Protein/DNA

中圖分類號:S917.4 文獻標志碼:A 文章編號:1002-1302(2014)03-0171-03

魚類在養殖過程中通常采用測定體長和體重的方式確定生長狀況。但早期發育階段,仔稚魚形體較小,精確測定其形態指標比較困難,降低了應用體長或體重來評價生長的可行

性。有研究表明,生化指標能夠準確地檢測到魚類生長的細微變化和食物分布的波動[1]。因此,在通過傳統方法不能度量出魚類生長的變化時,采用有效的生化指標來評價魚類的生長是非常重要的。魚類的生長依賴于蛋白質的持續合成,RNA和DNA在仔魚生長和發育中也有重要作用。RNA參與合成蛋白質,控制著細胞和核糖體的體積,進一步影響細胞的生長率。DNA是生物的遺傳物質,DNA濃度高表明單位組織中細胞數目多,RNA/DNA是體內蛋白質合成的體現。根據RNA/DNA比值可以估算出魚類的生長速度[2-4]。 目前已在隆頭魚(Tautoga Onitis)[5]、黑線鱈(Melanogrammus aeglefinus)[6]、東方藍鰭鮪(Thunnus orientalis)[7]、草魚(Ctenopharyngodon idellus)[8]、紅鰭東方鲀(Takifugu rubripes)[9]等魚中進行了核酸指標與生長參數的研究,結果表明RNA/DNA比值是評價養殖魚類生長潛能的敏感參數。在魚類的體長、體重較難測量時,可以采用核酸指標來度量生長狀況。

牙鲆在我國俗稱牙片、偏口,是名貴的海產魚類,又是重要的海水增養殖魚類之一,經濟價值較高。在早期發育階段,牙鲆仔魚要經歷變態過程,身體逐漸偏轉90°,導致腦顱及腦腔變形,同時生活方式也從浮游型轉變為底棲埋伏型[10]。變態期往往伴隨著營養危機和高死亡率,是鲆鰈魚類早期發育階段的關鍵期,并決定著年產量和經濟收益[11]。探究變態期仔稚魚的生長發育,了解魚苗的生理狀況,有助于優化養殖管理,提高成活率。因此,本研究分析變態期間牙鲆仔稚魚DNA、RNA和總蛋白的變化規律,確定上述生化指標跟生長的數量關系,以期建立從微觀細胞水平上評價仔稚魚生理狀態的方法,為發育生理等方面的深入研究提供基礎資料。

1 材料與方法

1.1 樣品采集和保存

試驗所用牙鲆魚苗取自江蘇省贛榆縣海頭鎮養魚場,培育時水溫16~19 °C,溶氧7.9~8.7 mg/L,鹽度3.1%~3.3%。分別在22、24、28、29、32、34、36日齡上午投餌前定點定時取樣,按照魚苗大小隨機取一定量的樣品用于測定RNA、DNA濃度及總蛋白濃度,樣品麻醉后快速保存于液氮中備用。在測定DNA、RNA濃度及總蛋白濃度前,于半解凍的狀態下用游標卡尺和電子天平測定體長(BL)、全長(TL)及體重(BW)。

1.2 核酸和總蛋白的測定

按照Buckley等[12]和Kuropat等[13]的方法,略作修改進行測定。采用整體勻漿法提取牙鲆仔稚魚的核酸和總蛋白,進一步用紫外分光光度法測定并計算RNA和DNA的含量及濃度,依據Bradford的方法[14]測定總蛋白含量及濃度。

1.3 數據分析

試驗數據均用“平均值±標準差”表示,采用SPSS 13.0軟件進行統計分析。

2 結果與分析

2.1 DNA、RNA及總蛋白的變化

由圖1可知,DNA濃度在22~32日齡期間保持相對穩定,32~34日齡時急劇升高,34~36日齡緩慢升高,在36日齡達到最高值。RNA濃度在24日齡升至峰值(2.34 μg/mg),然后逐漸下降,在32日齡降至最低值(1.15 μg/mg),之后呈先升高再下降的趨勢。總蛋白濃度在22~29日齡間呈升高趨勢,之后呈先降低再上升的趨勢。

由圖2可知,DNA、RNA含量及總蛋白含量在牙鲆變態期間均呈先升高后降低再升高的趨勢,在32~36日齡期間快速增長。

2.2 Protein/DNA和RNA/DNA的變化

由圖3可知,RNA/DNA比值在22~24日齡期間呈上升趨勢,之后保持下降趨勢直至32日齡,再呈先上升后下降的趨勢,在試驗結束時達到最低值(2.27)。Protein/DNA比值在22~29日期間呈上升趨勢,并在29日齡達到最高值(6197),之后呈先下降后上升趨勢。

2.3 核酸、總蛋白濃度與牙鲆體長、體重的關系

由表1、圖4、圖5可知,RNA、DNA濃度及總蛋白濃度與牙鲆體長和體重有明顯的線性關系;RNA/DNA和 Protein/DNA 與牙鲆體長和體重的線性關系弱于RNA、DNA濃度及總蛋白濃度。

DNA含量是反映生物體內細胞數目的指標[18]。29日齡時DNA含量較低,這跟此時牙鲆的形體劇烈改變有關;之后DNA含量呈升高趨勢,可能是因為牙鲆生活方式由浮游狀態改變到底棲狀態,此時剛經歷變態過程,生理狀況較差[19]。

由DNA和RNA的變化曲線可知,牙鲆變態開始至變態高峰期的生長以細胞增大為主,變態高峰后的生長以細胞增殖為主。微觀生長方式的改變對應的是宏觀養殖環境中牙鲆仔稚魚的發育狀況和生活方式的變化。

3.2 RNA/DNA

RNA/DNA是生物體中細胞代謝強度的指示指標,可用來評價魚類的生理狀況[20]。本試驗中RNA/DNA比值隨日齡增長和魚體增大呈下降趨勢,在青魚和日本沙丁魚中也有類似的結果[21-22],推測可能是因為變態期RNA量呈下降趨勢、DNA量呈增長趨勢,變態后RNA的增長幅度弱于DNA的增長幅度,即細胞增殖的速度高于蛋白合成的速度,這跟該時期牙鲆稚魚生活方式由浮游轉為底棲相關聯。有研究表明,RNA/DNA比值還可以預測生物的營養狀況,該比值有個界限值2.49,低于該界限值的生物處于“亞健康”狀態或者饑餓狀態[23]。本研究中牙鲆稚魚在36日齡時RNA/DNA比值為2.27,表明該時期的牙鲆稚魚處于營養不良狀態,推測可能是因為稚魚剛轉變為底棲生活,生活方式的劇烈改變會對其攝食產生一定障礙,進而影響到其營養狀況和生長。

3.3 Protein/DNA

蛋白質在細胞中占有很高的比例,因此Protein/DNA比值可作為指示細胞大小或者細胞重量的指標[18]。本研究中該比值在變態高峰期前保持升高趨勢,在29日齡時達到最高值,表明該時期魚體的生長以細胞增大為主。隨后稚魚轉入底棲生活,生活環境的急劇改變會對其攝食產生影響,此時魚體會大量消耗前期合成的蛋白質,導致變態后的Protein/DNA比值呈急劇下降趨勢,在條斑星鰈也發現了類似試驗結果[15]。待底棲環境適應后,稚魚逐漸減少對自身蛋白的利用率,加大對外源食物的攝入量,體內蛋白含量逐步升高,導致該比值在后期呈升高趨勢。

參考文獻:

[1]Buckley L J,Calderone E,Ong T L. RNA-DNA ratio and other nucleic acid-base indicators for growth and condition of marine fishes[J]. Hydrobiology,1999,401:265-277.

[2]Gwak W S,Tanaka M. Developmental change in RNA:DNA ratios of fed and starved laboratory-reared Japanese flounder larvae and juveniles,and its application to assessment of nutritional condition for wild fish[J]. Journal of Fish Biology,2001,59(4):902-915.

[3]Gwak W S,Tsusaki T,Tanaka M. Nutritional condition,as evaluated by RNA/DNA ratios,of hatchery-reared Japanese flounder from hatch to release[J]. Aquaculture,2003,219(4):503-514.

[4]Tanaka Y,Satoh K,Yamada H,et al. Assessment of the nutritional status of field-caught larval Pacific bluefin tuna by RNA/DNA ratio based on a starvation experiment of hatchery-reared fish[J]. Journal of Experimental Marine Biology and Ecology,2008,354(1):56-64.

[5]Mercaldo-Allen R,Kuropat C,Caldarone E M. A model to estimate growth in young-of-the-year tautog,Tautoga onitis,based on RNA/DNA ratio and seawater temperature[J]. Journal of Experimental Marine Biology and Ecology,2006,329(2):187-195.

[6]Caldarone E M. Estimating growth in haddock larvae Melanogrammus aeglefinus from RNA:DNA ratios and water temperature[J]. Marine Ecology Progress Series,2005,293:241-252.

[7]Tanaka Y,Gwak W S,Tanaka M,et al. Ontogenetic changes in RNA,DNA and protein contents of laboratory-reared Pacific bluefin tuna Thunnus orientalis[J]. Fisheries Science,2007,73:378-384.

[8]羅 莉,文 華,王 琳,等. 牛磺酸對草魚生長、品質、消化酶和代謝酶活性的影響[J]. 動物營養學報,2006,18(3):166-171.

[9]梁萌青,王成剛,陳 超,等. 幾種添加劑對紅鰭東方鲀的促生長效果與RNA/DNA關系[J]. 海洋水產研究,2001,22(2):38-41.

[10]鮑寶龍,楊桂梅,任大明. 牙鲆變態過程中的細胞凋亡[J]. 動物學報,2006,52(2):355- 361.

[11]Amara R,Galois R. Nutritional condition of metamorphosing sole:spatial and temporal analyses[J]. Journal of Fish Biology,2004,64(1):72-88.

[12]Buckley L J,Bulow F J. Techniques for the estimation of RNA,DNA,and protein in fish[M]//Summerfelt R C,Hall G E. The age and growth of fish. Ames,IA:Iowa State University Press,1987:345-354.

[13]Kuropat C,Mercaldo-Allen R,Caldarone E,et al. Evaluation of RNA concentration as an indicator of growth in young-of-the-year winter flounder Pseudopleuronectes americanus and tautog Tautogaonitis[J]. Marine Ecology-Progress Series,2002,230:265-274.

[14]Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976,72:248-254.

[15]佟雪紅,徐世宏,劉清華,等. 條斑星鰈變態期間DNA、RNA及總蛋白變化的研究[J]. 海洋科學,2010,34(5):41-48.

[16]Tanaka M,Kawai S,Seikai T,et al. Development of the digestive organ system in Japanese flounder in relation to metamorphosis and settlement[J]. Marine and Freshwater Behaviour and Physiology,1996,28:19-31.

[17]Peck M A,Buckley L J,Caldarone E M,et al. Effects of food consumption and temperature on growth rate and biochemical-based indicators of growth in early juvenile Atlantic cod Gadus morhua and haddock Melanogrammus aeglefinus[J]. Marine Ecology Progress Series,2003,251:233-243.

[18]Park S U,Lim H K,Han H S. Changes in RNA/DNA ratio and growth of slime flounder,Microstomus achne,larvae until metamorphosis[J]. Journal of Applied Ichthyology,2008,24(1):50-54.

[19]Malzahn A M,Clemmesen C,Rosenthal H. Temperature effects on growth and nucleic acids in laboratory-reared larval coregonid fish[J]. Marine Ecology Progress Series,2003,259:285-293.

[20]Vinagre B C,Fonseca V,Maia A,et al. Habitat specific growth rates and condition indices for the sympatric soles Solea solea(Linnaeus,1758)and Solea senegalensis Kaup 1858,in the Tagus estuary,Portugal,based on otolith daily increments and RNA-DNA ratio[J]. Journal of Applied Ichthyology,2008,24(2):163-169.

[21]Clemmesen C. The effect of food availability,age or size on the RNA/DNA ratio of individually measured herring larvae:laboratory calibration[J]. Marine Biology,1994,118:377-382.

[22]Kimura R,Watanabe Y,Zenitani H. Nutritional condition of first-feeding larvae of Japanese sardine in the coastal and oceanic waters along the Kuroshio Current[J]. Journal of Marine Sciences,2000,57(2):240-248.

[23]Islam M S,Tanaka M. Nutritional condition,starvation status and growth of early juvenile Japanese sea bass (Lateolabrax japonicus) related to prey distribution and feeding in the nursery ground[J]. Journal of Experimental Marine Biology and Ecology,2005,323:172-183.

[11]Amara R,Galois R. Nutritional condition of metamorphosing sole:spatial and temporal analyses[J]. Journal of Fish Biology,2004,64(1):72-88.

[12]Buckley L J,Bulow F J. Techniques for the estimation of RNA,DNA,and protein in fish[M]//Summerfelt R C,Hall G E. The age and growth of fish. Ames,IA:Iowa State University Press,1987:345-354.

[13]Kuropat C,Mercaldo-Allen R,Caldarone E,et al. Evaluation of RNA concentration as an indicator of growth in young-of-the-year winter flounder Pseudopleuronectes americanus and tautog Tautogaonitis[J]. Marine Ecology-Progress Series,2002,230:265-274.

[14]Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976,72:248-254.

[15]佟雪紅,徐世宏,劉清華,等. 條斑星鰈變態期間DNA、RNA及總蛋白變化的研究[J]. 海洋科學,2010,34(5):41-48.

[16]Tanaka M,Kawai S,Seikai T,et al. Development of the digestive organ system in Japanese flounder in relation to metamorphosis and settlement[J]. Marine and Freshwater Behaviour and Physiology,1996,28:19-31.

[17]Peck M A,Buckley L J,Caldarone E M,et al. Effects of food consumption and temperature on growth rate and biochemical-based indicators of growth in early juvenile Atlantic cod Gadus morhua and haddock Melanogrammus aeglefinus[J]. Marine Ecology Progress Series,2003,251:233-243.

[18]Park S U,Lim H K,Han H S. Changes in RNA/DNA ratio and growth of slime flounder,Microstomus achne,larvae until metamorphosis[J]. Journal of Applied Ichthyology,2008,24(1):50-54.

[19]Malzahn A M,Clemmesen C,Rosenthal H. Temperature effects on growth and nucleic acids in laboratory-reared larval coregonid fish[J]. Marine Ecology Progress Series,2003,259:285-293.

[20]Vinagre B C,Fonseca V,Maia A,et al. Habitat specific growth rates and condition indices for the sympatric soles Solea solea(Linnaeus,1758)and Solea senegalensis Kaup 1858,in the Tagus estuary,Portugal,based on otolith daily increments and RNA-DNA ratio[J]. Journal of Applied Ichthyology,2008,24(2):163-169.

[21]Clemmesen C. The effect of food availability,age or size on the RNA/DNA ratio of individually measured herring larvae:laboratory calibration[J]. Marine Biology,1994,118:377-382.

[22]Kimura R,Watanabe Y,Zenitani H. Nutritional condition of first-feeding larvae of Japanese sardine in the coastal and oceanic waters along the Kuroshio Current[J]. Journal of Marine Sciences,2000,57(2):240-248.

[23]Islam M S,Tanaka M. Nutritional condition,starvation status and growth of early juvenile Japanese sea bass (Lateolabrax japonicus) related to prey distribution and feeding in the nursery ground[J]. Journal of Experimental Marine Biology and Ecology,2005,323:172-183.

[11]Amara R,Galois R. Nutritional condition of metamorphosing sole:spatial and temporal analyses[J]. Journal of Fish Biology,2004,64(1):72-88.

[12]Buckley L J,Bulow F J. Techniques for the estimation of RNA,DNA,and protein in fish[M]//Summerfelt R C,Hall G E. The age and growth of fish. Ames,IA:Iowa State University Press,1987:345-354.

[13]Kuropat C,Mercaldo-Allen R,Caldarone E,et al. Evaluation of RNA concentration as an indicator of growth in young-of-the-year winter flounder Pseudopleuronectes americanus and tautog Tautogaonitis[J]. Marine Ecology-Progress Series,2002,230:265-274.

[14]Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976,72:248-254.

[15]佟雪紅,徐世宏,劉清華,等. 條斑星鰈變態期間DNA、RNA及總蛋白變化的研究[J]. 海洋科學,2010,34(5):41-48.

[16]Tanaka M,Kawai S,Seikai T,et al. Development of the digestive organ system in Japanese flounder in relation to metamorphosis and settlement[J]. Marine and Freshwater Behaviour and Physiology,1996,28:19-31.

[17]Peck M A,Buckley L J,Caldarone E M,et al. Effects of food consumption and temperature on growth rate and biochemical-based indicators of growth in early juvenile Atlantic cod Gadus morhua and haddock Melanogrammus aeglefinus[J]. Marine Ecology Progress Series,2003,251:233-243.

[18]Park S U,Lim H K,Han H S. Changes in RNA/DNA ratio and growth of slime flounder,Microstomus achne,larvae until metamorphosis[J]. Journal of Applied Ichthyology,2008,24(1):50-54.

[19]Malzahn A M,Clemmesen C,Rosenthal H. Temperature effects on growth and nucleic acids in laboratory-reared larval coregonid fish[J]. Marine Ecology Progress Series,2003,259:285-293.

[20]Vinagre B C,Fonseca V,Maia A,et al. Habitat specific growth rates and condition indices for the sympatric soles Solea solea(Linnaeus,1758)and Solea senegalensis Kaup 1858,in the Tagus estuary,Portugal,based on otolith daily increments and RNA-DNA ratio[J]. Journal of Applied Ichthyology,2008,24(2):163-169.

[21]Clemmesen C. The effect of food availability,age or size on the RNA/DNA ratio of individually measured herring larvae:laboratory calibration[J]. Marine Biology,1994,118:377-382.

[22]Kimura R,Watanabe Y,Zenitani H. Nutritional condition of first-feeding larvae of Japanese sardine in the coastal and oceanic waters along the Kuroshio Current[J]. Journal of Marine Sciences,2000,57(2):240-248.

[23]Islam M S,Tanaka M. Nutritional condition,starvation status and growth of early juvenile Japanese sea bass (Lateolabrax japonicus) related to prey distribution and feeding in the nursery ground[J]. Journal of Experimental Marine Biology and Ecology,2005,323:172-183.

主站蜘蛛池模板: 91高清在线视频| 综合色88| 精品人妻无码区在线视频| 97在线视频免费观看| 潮喷在线无码白浆| 手机精品福利在线观看| 精品久久久无码专区中文字幕| 伊人AV天堂| 国产激情影院| 任我操在线视频| 国产精欧美一区二区三区| 国产青榴视频在线观看网站| 日韩精品欧美国产在线| 免费国产小视频在线观看| 97av视频在线观看| 婷婷中文在线| 国产久草视频| 妇女自拍偷自拍亚洲精品| 亚洲欧美另类视频| 久久香蕉国产线| 天天摸天天操免费播放小视频| 国产亚洲视频免费播放| 国产真实乱子伦精品视手机观看| 全色黄大色大片免费久久老太| 91无码人妻精品一区| 亚洲an第二区国产精品| 亚洲天堂日韩在线| 国产精品自在在线午夜| 国产精品青青| 国产区在线观看视频| 六月婷婷精品视频在线观看| 亚洲日韩精品综合在线一区二区| 玖玖精品在线| 免费毛片全部不收费的| 无码av免费不卡在线观看| 日韩精品少妇无码受不了| 精品无码一区二区三区在线视频| 日韩av无码DVD| 色九九视频| 亚洲色图欧美视频| 亚洲人成网站色7777| 亚洲精品无码不卡在线播放| 久久精品最新免费国产成人| 亚洲人成在线免费观看| 99久久性生片| 91精品国产91久久久久久三级| 国产乱子伦精品视频| 狠狠躁天天躁夜夜躁婷婷| 国产精品观看视频免费完整版| 播五月综合| 91亚洲免费视频| 国产97视频在线观看| 全部免费毛片免费播放| 99国产精品免费观看视频| 国产www网站| 高清无码一本到东京热| 欧洲成人免费视频| 久久情精品国产品免费| av一区二区三区在线观看| 夜精品a一区二区三区| 午夜爽爽视频| 五月丁香伊人啪啪手机免费观看| 国产真实乱子伦视频播放| 黄色网页在线观看| 国产国模一区二区三区四区| 国产精品嫩草影院av| 中文字幕调教一区二区视频| 日韩午夜伦| 欧美国产精品不卡在线观看| 国产欧美视频在线| 美女无遮挡被啪啪到高潮免费| 亚洲人成亚洲精品| 国产精品永久在线| 精品午夜国产福利观看| 四虎影视8848永久精品| 亚洲小视频网站| 久久黄色影院| 亚洲区视频在线观看| 免费高清毛片| 久久黄色影院| 国产一级小视频| 不卡国产视频第一页|